系统:ubuntu 14.04
HADOOP VERSION: 2.6.0 32bits
在装好hadoop并且开启dfs和yarn以后,用JPS检查能看到一下六个进程:
14779 DataNode
15322 NodeManager
14657 NameNode
15194 ResourceManager
17656 Jps
14979 SecondaryNameNode
接下来我们需要运行WordCout项目来验证是否安装正确。
WordCount.java:
package org.apache.hadoop.mapred;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* This is an example Hadoop Map/Reduce application.
* It reads the text input files, breaks each line into words
* and counts them. The output is a locally sorted list of words and the
* count of how often they occurred.
*
* To run: bin/hadoop jar build/hadoop-examples.jar wordcount
* [-m <i>maps</i>] [-r <i>reduces</i>] <i>in-dir</i> <i>out-dir</i>
*/
public class WordCount extends Configured implements Tool {
/**
* Counts the words in each line.
* For each line of input, break the line into words and emit them as
* (<b>word</b>, <b>1</b>).
*/
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}
/**
* A reducer class that just emits the sum of the input values.
*/
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
static int printUsage() {
System.out.println("wordcount [-m <maps>] [-r <reduces>] <input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
/**
* The main driver for word count map/reduce program.
* Invoke this method to submit the map/reduce job.
* @throws IOException When there is communication problems with the
* job tracker.
*/
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName("wordcount");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();
for(int i=0; i < args.length; ++i) {
try {
if ("-m".equals(args[i])) {
conf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if ("-r".equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else {
other_args.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " +
args[i-1]);
return printUsage();
}
}
// Make sure there are exactly 2 parameters left.
if (other_args.size() != 2) {
System.out.println("ERROR: Wrong number of parameters: " +
other_args.size() + " instead of 2.");
return printUsage();
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
显然直接直接使用javac命令编译因为没有hadoop的jar包是会报很多错的。
查了一些资料,发现因为hadoop版本不同各种jar包的位置略有不同。
在hadoop2.6.0的安装包里面仔细查找可以发现需要的jar包都在hadoop-2.6.0/share/hadoop的各级子目录下面:
root@fd-ubuntu:/usr/hadoop/hadoop-2.6.0/share/hadoop# ls
common hdfs httpfs kms mapreduce tools yarn
于是我们可以首先在/etc/profile最后一行加入一个递归搜索此目录下jar文件的环境变量。
for X in find $HADOOP_DEV_HOME/share/hadoop -type d
do
HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:${X}
done
然后编写生成WordCount.jar的makefile:
jj = javac
WordCount.jar:org
jar -cvf WordCount.jar org
org: WordCount.java
$(jj) -cp $(HADOOP_CLASSPATH) WordCount.java -d .
clear:
rm -rf org WordCount.jar
按照以上步骤就可以生成WordCount的可执行JAR,再放入HDFS执行即可。
原文地址:http://blog.csdn.net/dingzuoer/article/details/44725869