标签:
前几天闲来无事实现了一个红黑树,虽然感觉理解透了,但是真正写码的时候还是调了一个上午才调通,理论还是得联系实践才行啊。
另外可以看看234树,算是红黑树的一个变种,可以加深对红黑树的理解
红黑树性质
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
树的旋转
简单说就是把节点的一个子节点提上来当做主节点,原节点作为子节点
操作很简单,需要注意的一点就是树的深度的变化
插入节点
跟普通二叉树插入流程相似,只是需要多加一步平衡二叉树以满足红黑树的性质;
插入节点默认为红色,所以唯一可能破坏的性质为性质4)
大致可以按照下面的几种情况处理:
* 1. 如果父节点为黑色,平衡完成
* 2. 如果叔节点为红色,向上循环
* 3. 如果叔节点为黑色,把多余红色节点旋转到叔节点
删除节点
删除前面几步跟普通二叉树也一样,只删除节点后需要平衡二叉树
删除节点后会破坏性质5)
删除后补充节点
* 1. 如果只有一个孩子节点,直接提上孩子节点
* 2. 如果没有孩子节点,找到后继节点,将后继节点的值替换到删除节点,然后删除后继几点
平衡删除后的树也可以大致分为以下几种情况:
* 1. 如果补上来的节点为红色,直接变为黑色补足
* 2. 如果兄弟节点为黑色,侄子也为黑色,将兄弟变为红色;
* 与兄弟深度平衡后继续向上循环
* 3. 如果兄弟为红色,或者侄子为红色,抢夺一个红色的节点补足自身
具体代码
package com.feinno.algorithmic.tree; import java.util.LinkedList; import java.util.List; import java.util.Random; /** * * @author renzhaolong * * @param <K> * @param <V> */ public class RedBlackTree<K extends Comparable<K>, V> { //哨兵节点 private Node nil = new Node(); //根节点 private Node root = nil; /** * 插入新值 * @param key * @param value */ public void insert(K key, V value) { Node newNode = new Node(key, value); if (root == nil) { root = newNode; root.color = Color.Black; return; } Node currentNode = root; newNode.color = Color.Red; while (currentNode != nil) { int compare = key.compareTo(currentNode.key); if (compare >= 0) { if (currentNode.rightChild != nil) { currentNode = currentNode.rightChild; } else { currentNode.rightChild = newNode; newNode.parent = currentNode; break; } } else { if (currentNode.leftChild != nil) { currentNode = currentNode.leftChild; } else { currentNode.leftChild = newNode; newNode.parent = currentNode; break; } } } if (currentNode.color == Color.Red) { insertBalance(newNode); } } /** * 添加节点后平衡红黑树 * 如果父节点为红色,两个连续红色节点 * 1. 如果父节点为黑色,平衡完成 * 2. 如果叔节点为红色,向上循环 * 3. 如果叔节点为黑色,把多余红色节点旋转到叔节点 * @param node */ private void insertBalance(Node node) { Node parent = node.parent; //如果父节点同为红色,违反红黑树性质 while (node != root && node.parent != root && parent.color == Color.Red) { //if left child if (parent.parent.leftChild == parent) { Node y = parent.parent.rightChild; //如果叔父节点也为红色,祖父节点已满,需要向上分裂 if (y.color == Color.Red) { parent.color = Color.Black; y.color = Color.Black; parent.parent.color = Color.Red; node = parent.parent; parent = node.parent; } else { //否则通过旋转维持平衡 //if right child if (parent.rightChild == node) { parent = leftRotate(parent); } parent.color = parent.parent.color; parent.parent.color = Color.Red; parent = rightRotate(parent.parent); break; } } else { Node y = parent.parent.leftChild; if (y.color == Color.Red) { parent.color = Color.Black; y.color = Color.Black; parent.parent.color = Color.Red; node = parent.parent; parent = node.parent; } else { if (parent.leftChild == node) { parent = rightRotate(parent); } parent.color = parent.parent.color; parent.parent.color = Color.Red; parent = leftRotate(parent.parent); break; } } } root.color = Color.Black; } /** * 删除key所在node * 如果节点不是子节点,需要确定后补节点 * 1. 如果只有一个孩子节点,直接提上孩子节点 * 2. 如果没有孩子节点,找到后继节点,将后继节点的值替换到删除节点,然后删除后继几点 * @param key */ public V delete(K key) { Node del = search(key); if (nil == del) { return null; } V result = del.value; if (del.leftChild != nil && del.rightChild != nil) { Node successor = getSuccessorNode(del); del.key = successor.key; del.value = successor.value; del = successor; } Node current; if (del.leftChild != nil) { current = del.leftChild; } else { current = del.rightChild; } current.parent = del.parent; if (current.parent.leftChild == del) { current.parent.leftChild = current; } else { current.parent.rightChild = current; } //如果删除的是黑色节点,需要重新平衡 if (del.color == Color.Black) { DeleteBalance(current); } return result; } /** * 删除节点后平衡红黑树 * 删除节点的子树深度不够 * 补足深度 * 1. 如果节点为红色,直接变为黑色补足 * 2. 如果兄弟节点为黑色,侄子也为黑色,将兄弟变为红色; * 与兄弟深度平衡后继续向上循环 * 3. 如果兄弟为红色,或者侄子为红色,抢夺一个红色的节点补足自身 * @param node */ private void DeleteBalance(Node node) { while (node != root && node.color == Color.Black) { Node parent = node.parent; if (parent.leftChild == node) { Node right = parent.rightChild; if (right.color == Color.Red) { right.color = Color.Black; parent.color = Color.Red; node = leftRotate(parent); right = parent.rightChild; } if (right.leftChild.color == Color.Black && right.rightChild.color == Color.Black) { right.color = Color.Red; node = parent; continue; } else { if (right.rightChild.color == Color.Black) { right.color = Color.Red; right.leftChild.color = Color.Black; right = rightRotate(right); } parent = leftRotate(parent); parent.color = parent.leftChild.color; parent.rightChild.color = Color.Black; parent.leftChild.color = Color.Black; break; } } else { Node left = parent.leftChild; if (left.color == Color.Red) { left.color = Color.Black; parent.color = Color.Red; rightRotate(parent); left = parent.leftChild; } if (left.leftChild.color == Color.Black && left.rightChild.color == Color.Black) { left.color = Color.Red; node = parent; continue; } else { if (left.leftChild.color == Color.Black) { left.color = Color.Red; left.rightChild.color = Color.Black; left = leftRotate(left); } parent = rightRotate(parent); parent.color = parent.rightChild.color; parent.rightChild.color = Color.Black;; parent.leftChild.color = Color.Black; //node = parent; break; } } } node.color = Color.Black; } /** * 获取当前节点的后继节点 * @param node * @return */ private Node getSuccessorNode(Node node) { if (node.rightChild == nil) { Node temp = node; while (temp.parent != nil) { if (temp.parent.leftChild == temp) { return temp.parent; } } return nil; } if (node.rightChild != nil) { Node temp = node.rightChild; while (temp.leftChild != nil) { temp = temp.leftChild; } return temp; } return nil; } /** * 右旋 * 把左子节点提上来 * @param node * @return */ private Node rightRotate(Node node) { Node left = node.leftChild; node.leftChild = left.rightChild; node.leftChild.parent = node; left.rightChild = node; left.parent = node.parent; node.parent = left; if (left.parent.leftChild == node) { left.parent.leftChild = left; } else { left.parent.rightChild = left; } return left; } /** * 左旋 * 把右子节点提上来 * @param node * @return */ private Node leftRotate(Node node) { Node right = node.rightChild; node.rightChild = right.leftChild; node.rightChild.parent = node; right.leftChild = node; right.parent = node.parent; node.parent = right; if (right.parent.leftChild == node) { right.parent.leftChild = right; } else { right.parent.rightChild = right; } return right; } /** * 根据key获取value * @param key * @return */ public V get(K key) { return search(key).value; } /** * 根据key查找Node * @param key * @return */ private Node search(K key) { Node result = root; while (result != nil) { int compare = key.compareTo(result.key); if (compare == 0) { return result; } else if (compare > 0) { result = result.rightChild; } else { result = result.leftChild; } } return nil; } private boolean checkBalance() { if (root == nil) { return true; } if (root.color == Color.Red) { return false; } int height = getNodeHeight(root); if (-1 == height) { return false; } return true; } /** * 如果满足红黑树性质 * 如果不满足,返回-1 * @param node * @return */ private int getNodeHeight(Node node) { if (node == nil) { return 0; } if (Color.Red == node.color && Color.Red == node.parent.color) { return -1; } int left = getNodeHeight(node.leftChild); if (-1 == left) { return -1; } int right = getNodeHeight(node.rightChild); if (left != right) { return -1; } if (Color.Red == node.color) return right; return right + 1; } private class Node implements Comparable<Node> { private Node parent = nil; private Node leftChild = nil; private Node rightChild = nil; private Color color = Color.Black; private K key; private V value; public Node(){} public Node(K key, V value) { this.key = key; this.value = value; } @Override public int compareTo(Node o) { return key.compareTo(o.key); } public String toString() { return "Key:" + key.toString() + " Color:" + color; } } private static enum Color { Red, Black } public static void main(String[] args) throws Exception { RedBlackTree<Integer, Integer> rb = new RedBlackTree<Integer, Integer>(); List<Integer> keys = new LinkedList<Integer>(); Random ran = new Random(); for (int i = 0; i < 1000; i++) { int key = ran.nextInt(100000); rb.insert(key, 1); keys.add(key); if (rb.checkBalance() == false) { throw new Exception("error"); } else { System.out.println("good:" + key); } } for (int key : keys) { rb.delete(key); if (rb.checkBalance() == false) { throw new Exception("error" + key); } else { //System.out.println("good"); } } } }
标签:
原文地址:http://www.cnblogs.com/remagon/p/4377460.html