码迷,mamicode.com
首页 > 编程语言 > 详细

素数验证算法——直面大数据

时间:2015-04-03 20:59:28      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:

      素数的验证,可能会被作为所谓“循环练习”的题目。因为其算法实在太简单(不知道直接暴力循环能不能算一种算法)。经典的方法就是试除,用循环变量i从2开始到n-1,如果有取模为0的,就直接return false。到最后,还没有模出0,就return true。这个算法也可以优化n-1为sqrt(n)。原理是:设x为大于sqrt(n)的数,n=xy,则y一定小于sqrt(n),所以只要验证到sqrt(n),就能验证到y,相当于验证到了x。

      以上这种暴力算法,如果有N个数要验证,则时间复杂度为O(sqrt(N)*N),面对类似于N=100000000的数据明显力不从心。所以,我们可以使用筛选法:依次剔除2、3、5、7等素数的倍数,最后就能得出一张素数表。建表后,查询素数只要O(1)的时间复杂度。但是对于以上数量级的N,仍然不能很快的求出一张素数表,消耗时间高达2.1s。所以,我们还要加以优化。

      众所周知,除去2以外,所有的偶数均为合数。所以,素数表内可以除去偶数。即prime[0]代表3是否为素数,prime[1]代表5……而且,筛数也不必筛到N,只要筛到sqrt(N)即可。设key1(i)=i*2+3;key2(i)=(i-3)/2,这分别对应素数表内第i个位置表示的奇数与奇数i在素数表内的存储位置。原来筛的时候,i*(2,3,4…)简化为了i*(3,5,7…)。头一次筛掉的数为key2(key1(i*i)),简化后为(i*i)*8+3,之后每次累加的数为key2(key1(i+2))-key2(key1(i)),简化后为i*2+3,这样推导完成以后,程序就很容易写了。下面给出源代码:

#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;

const int N=100000001;
const int N1=(N-3)/2;
bool prime[N1+1];
int tmp;

int main(void){
    memset(prime,true,sizeof(prime));
    for (int i=0;i<(int(sqrt(N))-3)>>1;++i){
        if (prime[i]){
            tmp=((i*i)<<3)+3;
            while (tmp<N1){
                prime[tmp]=false;
                tmp+=(i<<1)+3;
            }
        }
    }
    printf("%d\t",2);
    for (int i=0;i<N1;++i)
        if (prime[i])   printf("%d\t",i*2+3);
    return 0;
}

      附上各种方法的时间与内存占用统计表(测试环境:MinGw4.9.2,Intel Xeon E3 1230V2,去除IO输出时间):

  时间 内存
暴力试除法 N/A(太长了) 1Mb
朴素筛选法 2.1s 98Mb
优化后的筛选法 1.0s 50Mb

素数验证算法——直面大数据

标签:

原文地址:http://www.cnblogs.com/Darksun/p/4390944.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!