标签:
此文转自:http://blog.csdn.net/21cnbao/article/details/8457546
更详细内容可以参考官网
Device Tree 官网:http://devicetree.org/Device_Tree_Usage
Linus Torvalds在2011年3月17日的ARM Linux邮件列表宣称“this whole ARM thing is a f*cking pain in the ass”,引发ARM Linux社区的地震,随后ARM社区进行了一系列的重大修正。在过去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥着大量的垃圾代码,相当多数的代码只是在描述板级细节,而 这些板级细节对于内核来讲,不过是垃圾,如板上的platform设备、resource、i2c_board_info、spi_board_info 以及各种硬件的platform_data。读者有兴趣可以统计下常见的s3c2410、s3c6410等板级目录,代码量在数万行。
社区必须改变这种局面,于是PowerPC等其他体系架构下已经使用的Flattened Device
Tree(FDT)进入ARM社区的视野。Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware
(OF)。在Linux
2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,采用Device
Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码。
Device
Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和
value。在Device Tree中,可描述的信息包括(原先这些信息大多被hard code到kernel中):
它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux 内核中的platform_device、i2c_client、spi_device等设备,而这些设备用到的内存、IRQ等资源,也被传递给了内核, 内核会将这些资源绑定给展开的相应的设备。
整个Device Tree牵涉面比较广,即增加了新的用于描述设备硬件信息的文本格式,又增加了编译这一文本的工具,同时Bootloader也需要支持将编译后的Device Tree传递给Linux内核。
.dts文件是一种ASCII 文本格式的Device Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM
Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多
个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者
多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就include这个.dtsi。譬如,
对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:
/include/ "vexpress-v2m.dtsi"
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi。
.dts(或者其include的.dtsi)基本元素即为前文所述的结点和属性:
上述.dts文件并没有什么真实的用途,但它基本表征了一个Device Tree源文件的结构:
1个root结点"/";
root结点下面含一系列子结点,本例中为"node1" 和 "node2";
结点"node1"下又含有一系列子结点,本例中为"child-node1" 和 "child-node2";
各结点都有一系列属性。这些属性可能为空,如"
an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-
property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-
data-property"。
下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1个双核ARM Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和
0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于
0x10140000)和一个external bus桥;
External bus桥上又连接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:
上
述.dts文件中,root结点"/"的compatible 属性compatible =
"acme,coyotes-revenge";定义了系统的名称,它的组织形式
为:<manufacturer>,<model>。Linux内核透过root结点"/"的compatible
属性即可判断它启动的是什么machine。
在.dts文件的每个设备,都有一个compatible 属性,compatible属性用户驱动和设备的绑定。compatible
属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式
为"<manufacturer>,<model>",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更
广的范围。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。
再比如,Freescale MPC8349 SoC含一个串口设备,它实现了国家半导体(National
Semiconductor)的ns16550 寄存器接口。则MPC8349串口设备的compatible属性为compatible =
"fsl,mpc8349-uart", "ns16550"。其中,fsl,mpc8349-uart指代了确切的设备,
ns16550代表该设备与National Semiconductor 的16550 UART保持了寄存器兼容。
接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible 属性为"arm,cortex-a9"。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-
address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如
3com
Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-
address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及
serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中
给出。ePAPR标准给出了结点命名的规范。
可寻址的设备使用如下信息来在Device Tree中编码地址信息:
其中reg的组织形式为reg = <address1 length1 [address2 length2] [address3
length3] ... >,其中的每一组address
length表明了设备使用的一个地址范围。address为1个或多个32位的整型(即cell),而length则为cell的列表或者为空
(若#size-cells = 0)。address 和 length
字段是可变长的,父结点的#address-cells和#size-cells分别决定了子结点的reg属性的address和length字段的长
度。在本例中,root结点的#address-cells
= <1>;和#size-cells =
<1>;决定了serial、gpio、spi等结点的address和length字段的长度分别为1。cpus
结点的#address-cells = <1>;和#size-cells =
<0>;决定了2个cpu子结点的address为1,而length为空,于是形成了2个cpu的reg =
<0>;和reg = <1>;。external-bus结点的#address-cells =
<2>和#size-cells = <1>;决定了其下的ethernet、i2c、flash的reg字段形如reg
= <0 0 0x1000>;、reg = <1 0 0x1000>;和reg = <2 0
0x4000000>;。其中,address字段长度为0,开始的第一个cell(0、1、2)是对应的片选,第2个cell(0,0,0)是相
对该片选的基地址,第3个cell(0x1000、0x1000、0x4000000)为length。特别要留意的是i2c结点中定义的
#address-cells = <1>;和#size-cells =
<0>;又作用到了I2C总线上连接的RTC,它的address字段为0x58,是设备的I2C地址。
root结点的子结点描述的是CPU的视图,因此root子结点的address区域就直接位于CPU的memory区域。但是,经过总线桥后的
address往往需要经过转换才能对应的CPU的memory映射。external-bus的ranges属性定义了经过external-bus桥
后的地址范围如何映射到CPU的memory区域。
ranges
是地址转换表,其中的每个项目是一个子地址、父地址以及在子地址空间的大小的映射。映射表中的子地址、父地址分别采用子地址空间的#address-
cells和父地址空间的#address-cells大小。对于本例而言,子地址空间的#address-cells为2,父地址空间
的#address-cells值为1,因此0 0 0x10100000
0x10000的前2个cell为external-bus后片选0上偏移0,第3个cell表示external-bus后片选0上偏移0的地址空间被
映射到CPU的0x10100000位置,第4个cell表示映射的大小为0x10000。ranges的后面2个项目的含义可以类推。
Device Tree中还可以中断连接信息,对于中断控制器而言,它提供如下属性:
interrupt-controller – 这个属性为空,中断控制器应该加上此属性表明自己的身份;
#interrupt-cells – 与#address-cells 和 #size-cells相似,它表明连接此中断控制器的设备的interrupts属性的cell大小。
在整个Device Tree中,与中断相关的属性还包括:
interrupt-parent – 设备结点透过它来指定它所依附的中断控制器的phandle,当结点没有指定interrupt-parent
时,则从父级结点继承。对于本例而言,root结点指定了interrupt-parent =
<&intc>;其对应于intc:
interrupt-controller@10140000,而root结点的子结点并未指定interrupt-parent,因此它们都继承了
intc,即位于0x10140000的中断控制器。
interrupts –
用到了中断的设备结点透过它指定中断号、触发方法等,具体这个属性含有多少个cell,由它依附的中断控制器结点的#interrupt-cells属性
决定。而具体每个cell又是什么含义,一般由驱动的实现决定,而且也会在Device Tree的binding文档中说明。譬如,对于ARM
GIC中断控制器而言,#interrupt-cells为3,它3个cell的具体含义Documentation/devicetree
/bindings/arm/gic.txt就有如下文字说明:
另
外,值得注意的是,一个设备还可能用到多个中断号。对于ARM
GIC而言,若某设备使用了SPI的168、169号2个中断,而言都是高电平触发,则该设备结点的interrupts属性可定义
为:interrupts = <0 168 4>, <0 169 4>;
除了中断以外,在ARM Linux中clock、GPIO、pinmux都可以透过.dts中的结点和属性进行描述。
将.dts编译为.dtb的工具。DTC的源代码位于内核的scripts/dtc目录,在Linux内核使能了Device
Tree的情况下,编译内核的时候主机工具dtc会被编译出来,对应scripts/dtc/Makefile中的“hostprogs-y :=
dtc”这一hostprogs编译target。
在Linux内核的arch/arm/boot/dts/Makefile中,描述了当某种SoC被选中后,哪些.dtb文件会被编译出来,如与VEXPRESS对应的.dtb包括:
在 Linux下,我们可以单独编译Device Tree文件。当我们在Linux内核下运行make dtbs时,若我们之前选择了ARCH_VEXPRESS,上述.dtb都会由对应的.dts编译出来。因为arch/arm/Makefile中含有一 个dtbs编译target项目。
.dtb是.dts被DTC编译后的二进制格式的Device Tree描述,可由Linux内核解析。通常在我们为电路板制作NAND、SD启动image时,会为.dtb文件单独留下一个很小的区域以存放之,之后 bootloader在引导kernel的过程中,会先读取该.dtb到内存。
对于Device Tree中的结点和属性具体是如何来描述设备的硬件细节的,一般需要文档来进行讲解,文档的后缀名一般为.txt。这些文档位于内核的Documentation/devicetree/bindings目录,其下又分为很多子目录。
Uboot mainline 从 v1.1.3开始支持Device Tree,其对ARM的支持则是和ARM内核支持Device Tree同期完成。
为了使能Device Tree,需要编译Uboot的时候在config文件中加入
#define CONFIG_OF_LIBFDT
在Uboot中,可以从NAND、SD或者TFTP等任意介质将.dtb读入内存,假设.dtb放入的内存地址为0x71000000,之后可在Uboot运行命令fdt addr命令设置.dtb的地址,如:
U-Boot> fdt addr 0x71000000
fdt的其他命令就变地可以使用,如fdt resize、fdt print等。
对于ARM来讲,可以透过bootz kernel_addr initrd_address
dtb_address的命令来启动内核,即dtb_address作为bootz或者bootm的最后一次参数,第一个参数为内核映像的地址,第二个参
数为initrd的地址,若不存在initrd,可以用 -代替。
有了Device Tree后,大量的板级信息都不再需要,譬如过去经常在arch/arm/plat-xxx和arch/arm/mach-xxx实施的如下事情:
1. 注册platform_device,绑定resource,即内存、IRQ等板级信息。
透过Device Tree后,形如
之
类的platform_device代码都不再需要,其中platform_device会由kernel自动展开。而这些resource实际来源
于.dts中设备结点的reg、interrupts属性。典型地,大多数总线都与“simple_bus”兼容,而在SoC对应的machine
的.init_machine成员函数中,调用of_platform_bus_probe(NULL, xxx_of_bus_ids,
NULL);即可自动展开所有的platform_device。譬如,假设我们有个XXX
SoC,则可在arch/arm/mach-xxx/的板文件中透过如下方式展开.dts中的设备结点对应的platform_device:
2. 注册i2c_board_info,指定IRQ等板级信息。
形如
之类的i2c_board_info代码,目前不再需要出现,现在只需要把tlv320aic23、fm3130、24c64这些设备结点填充作为相应的I2C controller结点的子结点即可,类似于前面的
Device Tree中的I2C client会透过I2C host驱动的probe()函数中调用of_i2c_register_devices(&i2c_dev->adapter);被自动展开。
3. 注册spi_board_info,指定IRQ等板级信息。
形如
之 类的spi_board_info代码,目前不再需要出现,与I2C类似,现在只需要把mtd_dataflash之类的结点,作为SPI控制器的子结点 即可,SPI host驱动的probe函数透过spi_register_master()注册master的时候,会自动展开依附于它的slave。
4. 多个针对不同电路板的machine,以及相关的callback。
过去,ARM Linux针对不同的电路板会建立由MACHINE_START和MACHINE_END包围起来的针对这个machine的一系列callback,譬如:
这 些不同的machine会有不同的MACHINE ID,Uboot在启动Linux内核时会将MACHINE ID存放在r1寄存器,Linux启动时会匹配Bootloader传递的MACHINE ID和MACHINE_START声明的MACHINE ID,然后执行相应machine的一系列初始化函数。
引入Device
Tree之后,MACHINE_START变更为DT_MACHINE_START,其中含有一个.dt_compat成员,用于表明相关的
machine与.dts中root结点的compatible属性兼容关系。如果Bootloader传递给内核的Device
Tree中root结点的compatible属性出现在某machine的.dt_compat表中,相关的machine就与对应的Device
Tree匹配,从而引发这一machine的一系列初始化函数被执行。
Linux 倡导针对多个SoC、多个电路板的通用DT machine,即一个DT machine的.dt_compat表含多个电路板.dts文件的root结点compatible属性字符串。之后,如果的电路板的初始化序列不一 样,可以透过int of_machine_is_compatible(const char *compat) API判断具体的电路板是什么。
譬如arch/arm/mach-exynos/mach-exynos5-dt.c的EXYNOS5_DT machine同时兼容"samsung,exynos5250"和"samsung,exynos5440":
它的.init_machine成员函数就针对不同的machine进行了不同的分支处理:
使用Device Tree后,驱动需要与.dts中描述的设备结点进行匹配,从而引发驱动的probe()函数执行。对于platform_driver而言,需要添加一 个OF匹配表,如前文的.dts文件的"acme,a1234-i2c-bus"兼容I2C控制器结点的OF匹配表可以是:
对于I2C和SPI从设备而言,同样也可以透过of_match_table添加匹配的.dts中的相关结点的compatible属性,如sound/soc/codecs/wm8753.c中的:
不 过这边有一点需要提醒的是,I2C和SPI外设驱动和Device Tree中设备结点的compatible 属性还有一种弱式匹配方法,就是别名匹配。compatible 属性的组织形式为<manufacturer>,<model>,别名其实就是去掉compatible 属性中逗号前的manufacturer前缀。关于这一点,可查看drivers/spi/spi.c的源代码,函数 spi_match_device()暴露了更多的细节,如果别名出现在设备spi_driver的id_table里面,或者别名与 spi_driver的name字段相同,SPI设备和驱动都可以匹配上:
在Linux的BSP和驱动代码中,还经常会使用到Linux中一组Device Tree的API,这些API通常被冠以of_前缀,它们的实现代码位于内核的drivers/of目录。这些常用的API包括:
int of_device_is_compatible(const struct device_node *device,const char *compat);
判断设备结点的compatible 属性是否包含compat指定的字符串。当一个驱动支持2个或多个设备的时候,这些不同.dts文件中设备的compatible 属性都会进入驱动 OF匹配表。因此驱动可以透过Bootloader传递给内核的Device Tree中的真正结点的compatible 属性以确定究竟是哪一种设备,从而根据不同的设备类型进行不同的处理。如drivers/pinctrl/pinctrl-sirf.c即兼容 于"sirf,prima2-pinctrl",又兼容于"sirf,prima2-pinctrl",在驱动中就有相应分支处理:
struct device_node *of_find_compatible_node(struct device_node *from,
const char *type, const char *compatible);
根据compatible属性,获得设备结点。遍历Device Tree中所有的设备结点,看看哪个结点的类型、compatible属性与本函数的输入参数匹配,大多数情况下,from、type为NULL。
int of_property_read_u8_array(const struct device_node *np,
const char *propname, u8 *out_values, size_t sz);
int of_property_read_u16_array(const struct device_node *np,
const char *propname, u16 *out_values, size_t sz);
int of_property_read_u32_array(const struct device_node *np,
const char *propname, u32 *out_values, size_t sz);
int of_property_read_u64(const struct device_node *np, const char
*propname, u64 *out_value);
读取设备结点np的属性名为propname,类型为8、16、32、64位整型数组的属性。对于32位处理器来讲,最常用的是
of_property_read_u32_array()。如在arch/arm/mm/cache-l2x0.c中,透过如下语句读取L2
cache的"arm,data-latency"属性:
在arch/arm/boot/dts/vexpress-v2p-ca9.dts中,含有"arm,data-latency"属性的L2 cache结点如下:
有些情况下,整形属性的长度可能为1,于是内核为了方便调用者,又在上述API的基础上封装出了更加简单的读单一整形属性的API,它们为int
of_property_read_u8()、of_property_read_u16()等,实现于include/linux/of.h:
int of_property_read_string(struct device_node *np, const char
*propname, const char **out_string);
int of_property_read_string_index(struct device_node *np, const char
*propname, int index, const char **output);
前者读取字符串属性,后者读取字符串数组属性中的第index个字符串。如drivers/clk/clk.c中的 of_clk_get_parent_name()透过of_property_read_string_index()遍历clkspec结点的所 有"clock-output-names"字符串数组属性。
static inline bool of_property_read_bool(const struct device_node *np,
const char *propname);
如果设备结点np含有propname属性,则返回true,否则返回false。一般用于检查空属性是否存在。
void __iomem *of_iomap(struct device_node *node, int index);
通过设备结点直接进行设备内存区间的 ioremap(),index是内存段的索引。若设备结点的reg属性有多段,可通过index标示要ioremap的是哪一段,只有1段的情 况,index为0。采用Device Tree后,大量的设备驱动通过of_iomap()进行映射,而不再通过传统的ioremap。
unsigned int irq_of_parse_and_map(struct device_node *dev, int index);
透过Device Tree或者设备的中断号,实际上是从.dts中的interrupts属性解析出中断号。若设备使用了多个中断,index指定中断的索引号。
还有一些OF API,这里不一一列举,具体可参考include/linux/of.h头文件。
ARM社区一贯充斥的大量垃圾代码导致Linus盛怒,因此社区在2011年到2012年进行了大量的工作。ARM Linux开始围绕Device Tree展开,Device Tree有自己的独立的语法,它的源文件为.dts,编译后得到.dtb,Bootloader在引导Linux内核的时候会将.dtb地址告知内核。之 后内核会展开Device Tree并创建和注册相关的设备,因此arch/arm/mach-xxx和arch/arm/plat-xxx中大量的用于注册platform、 I2C、SPI板级信息的代码被删除,而驱动也以新的方式和.dts中定义的设备结点进行匹配。
[转]ARM Linux 3.x Device Tree Usage
标签:
原文地址:http://www.cnblogs.com/jasonleeee/p/4403075.html