码迷,mamicode.com
首页 > 编程语言 > 详细

【用Python玩Machine Learning】KNN * 代码 * 二

时间:2015-04-11 13:17:22      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:

继续之前的写。


三、对单个样本进行分类。

'''
function: classify the input sample by voting from its K nearest neighbor
input:
1. the input feature vector
2. the feature matrix
3. the label list
4. the value of k
return: the result label
'''
def ClassifySampleByKNN(featureVectorIn, featureMatrix, labelList, kValue):

    # calculate the distance between feature input vector and the feature matrix
    disValArray = CalcEucDistance(featureVectorIn,featureMatrix)

    # sort and return the index
    theIndexListOfSortedDist = disValArray.argsort()

    # consider the first k index, vote for the label
    labelAndCount = {}
    for i in range(kValue):
        theLabelIndex = theIndexListOfSortedDist[i]
        theLabel = labelList[theLabelIndex]
        labelAndCount[theLabel] = labelAndCount.get(theLabel,0) + 1
    sortedLabelAndCount = sorted(labelAndCount.iteritems(), key=lambda x:x[1], reverse=True)

    return sortedLabelAndCount[0][0]

基本思路就是,首先计算输入样本和训练样本集合的欧氏距离,然后根据距离进行排序,选择距离最小的k个样本,用这些样本对应的标签进行投票,票数最多的标签就是输入样本所对应的标签。

比较有特色的写法是这一句:

# sort and return the index
    theIndexListOfSortedDist = disValArray.argsort()
disValArray是numpy的一维数组,存储的仅仅是欧式距离的值。argsort直接对这些值进行排序,并且把排序结果所对应的原索引返回回来。很方便。另外一句是sorted函数的调用,按照value来对字典进行排序,用到了函数式编程的lambda表达式。这个用operator也能达到同样的目的。


四、对测试样本文件进行分类,并统计错误率

'''
function: classify the samples in test file by KNN algorithm
input:
1. the name of training sample file
2. the name of testing sample file
3. the K value for KNN
4. the name of log file
'''
def ClassifySampleFileByKNN(sampleFileNameForTrain, sampleFileNameForTest, kValue, logFileName):

    logFile = open(logFileName,'w')

    # load the feature matrix and normailize them
    feaMatTrain, labelListTrain = LoadFeatureMatrixAndLabels(sampleFileNameForTrain)
    norFeaMatTrain = AutoNormalizeFeatureMatrix(feaMatTrain)
    feaMatTest, labelListTest = LoadFeatureMatrixAndLabels(sampleFileNameForTest)
    norFeaMatTest = AutoNormalizeFeatureMatrix(feaMatTest)

    # classify the test sample and write the result into log
    errorNumber = 0.0
    testSampleNum = norFeaMatTest.shape[0]
    for i in range(testSampleNum):
        label = ClassifySampleByKNN(norFeaMatTest[i,:],norFeaMatTrain,labelListTrain,kValue)
        if label == labelListTest[i]:
            logFile.write("%d:right\n"%i)
        else:
            logFile.write("%d:wrong\n"%i)
            errorNumber += 1
    errorRate = errorNumber / testSampleNum
    logFile.write("the error rate: %f" %errorRate)

    logFile.close()

    return

代码挺多,不过逻辑上就很简单了。没什么好说的。另外,不知道python中的命名是什么习惯?我发现如果完全把变量名字展开,太长了——我的macbook pro显示起来太难看。这里就沿用c/c++的变量简写命名方式了。


五、入口调用函数

类似c/c++的main函数。只要运行kNN.py这个脚本,就会先执行这一段代码:

if __name__ == '__main__':

    print "You are running KNN.py"

    ClassifySampleFileByKNN('datingSetOne.txt','datingSetTwo.txt',3,'log.txt')

kNN中的k值我选择的是3。


未完,待续。


【用Python玩Machine Learning】KNN * 代码 * 二

标签:

原文地址:http://blog.csdn.net/xceman1997/article/details/44994215

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!