标签:
main.h: #include <iostream> #include <queue> #define DefaultSize 10 #define maxWeight -1 using namespace std; template<typename T,typename E> struct Edge { int dest; E cost; Edge<T,E> *link; Edge(int d=0,int c=0):dest(d),cost(c),link(NULL){} }; template<typename T,typename E> struct Vertex { T data; Edge<T,E> *adj; }; template<typename T,typename E> class Base { public: virtual T getValue(int i)=0; virtual E getWeight(int v1,int v2)=0; virtual bool insertVertex(const T& vertex)=0; virtual bool insertEdge(const T& l,const T& r,E cost)=0; virtual void Show()=0; virtual bool removeEdge(int v1,int v2)=0; virtual bool removeVertex(int v)=0; virtual int getFirstNeighbor(int v)=0; virtual int NumberOfEdge()=0; virtual int getNextNeighbor(int v,int w)=0; }; template<typename T,typename E> class Graphlnk:public Base<T,E> { public: Graphlnk(int sz=DefaultSize) { numVertices=0; maxVertices=DefaultSize; numEgde=0; NodeTable = new Vertex<T,E>[sz]; for(int i=0;i<sz;i++) { NodeTable[i].adj=NULL; } } int NumberOfEdge() { return numEgde; } int getFirstNeighbor(int v) { if(v<0||v>=numVertices)return -1; Edge<T,E> *p = NodeTable[v].adj; if(p!=NULL) { return p->dest; } return -1; } int getNextNeighbor(int v,int w) { if(v<0 || v>=numVertices || w<0 || w>=numVertices) { return -1; } Edge<T,E> *p = NodeTable[v].adj; while(p!=NULL) { if(p->dest == w) { if(p->link!=NULL) return p->link->dest; } p = p->link; } return -1; } bool removeVertex(int v) { Edge<T,E> *p = NodeTable[v].adj; while(p!=NULL) { removeEdge(v,p->dest); p=p->link; } NodeTable[v].data = NodeTable[numVertices-1].data; NodeTable[v].adj = NodeTable[numVertices-1].adj; p = NodeTable[numVertices-1].adj; Edge<T,E> *q = NULL; while(p!=NULL) { int index = p->dest; q = NodeTable[index].adj; while(q!=NULL) { if(q->dest==(numVertices-1)) { q->dest = v; break; } q=q->link; } p=p->link; } numVertices--; } bool removeEdge(int v1,int v2) { if(v1<0||v1>=numVertices||v2<0||v2>=numVertices) {return false;} Edge<T,E> *p = NodeTable[v1].adj; Edge<T,E> *q = NULL; while(p!=NULL && p->dest!=v2) { q=p; p=p->link; } if(q==NULL && p==NULL) { return false; } if(q==NULL && p!=NULL && p->dest==v2) { NodeTable[v1].adj=p->link; delete p; } if(p==NULL) { return false; } else if(q!=NULL) { q->link=p->link; delete p; } p = NodeTable[v2].adj; q = NULL; while(p!=NULL && p->dest!=v1) { q=p; p=p->link; } if(q==NULL && p==NULL) { return false; } if(q==NULL && p!=NULL && p->dest==v1) { NodeTable[v2].adj=p->link; delete p; } if(p==NULL) { return false; } else if(q!=NULL) { q->link=p->link; delete p; } numEgde--; } bool insertEdge(const T& l,const T& r,E cost) { int v1 = getValuePos(l); int v2 = getValuePos(r); Edge<T,E> *p = NodeTable[v1].adj; Edge<T,E> *s = new Edge<T,E>(v2,cost); Edge<T,E> *q = NULL; while(p!=NULL && p->dest!=cost) { q=p; p=p->link; } if(p!=NULL && p->dest==cost) { return false; } if(q==NULL) { NodeTable[v1].adj = s; } if(p==NULL && q!=NULL) { s->link = NodeTable[v1].adj; NodeTable[v1].adj=s; } p = NodeTable[v2].adj; s = new Edge<T,E>(v1,cost); q = NULL; while(p!=NULL && p->dest!=cost) { q=p; p=p->link; } if(p!=NULL && p->dest==cost) { return false; } if(q==NULL) { NodeTable[v2].adj = s; } if(p==NULL&&q!=NULL) { s->link = NodeTable[v2].adj; NodeTable[v2].adj=s; } numEgde++; } bool insertVertex(const T& vertex) { NodeTable[numVertices++].data=vertex; return true; } void Show() { Edge<T,E> *p=NULL; for(int i=0;i<numVertices;i++) { cout<<NodeTable[i].data<<"> "; p=NodeTable[i].adj; while(p!=NULL) { cout<<p->dest<<"--"<<p->cost<<" "; p=p->link; } cout<<endl; } } E getWeight(int v1,int v2) { if(v1<0 || v1>=numVertices || v2<0 || v2>=numVertices) { return -1; } Edge<T,E> *p = NodeTable[v1].adj; // Edge<T,E> *m = NULL; while(p!=NULL) { //m = p; if(p->dest==v2) break; p=p->link; } if(p!=NULL) {return p->cost;} else {return maxWeight;} } T getValue(int i) { return NodeTable[i].data; } int NumberOfVertices() { return numVertices; } int getValuePos(const T &t) { for(int i=0;i<numVertices;i++) { if(NodeTable[i].data==t) return i; } return -1; } Edge<T,E> * getNodeptr(int i) { return NodeTable[i].adj; } private: int numVertices; int maxVertices; int numEgde; Vertex<T,E> *NodeTable; }; template<typename T,typename E> void DFS(Graphlnk<T,E>& G,const T& v,bool visted[]) { int index = G.getValuePos(v); cout<<G.getValue(index)<<endl; visted[index]=true; int w = G.getFirstNeighbor(index); while(w!=-1) { if(!visted[w])DFS(G,G.getValue(w),visted); w = G.getNextNeighbor(index,w); } /* while(index!=-1) { int x = 0; while(!visted[index]) { cout<<G.getValue(index)<<endl; visted[index]=true; x = G.getFirstNeighbor(index); DFS(G,G.getValue(x),visted); } index = G.getNextNeighbor(x,index); }*/ } template<typename T,typename E> void DFS(Graphlnk<T,E>& G,const T& v) { int n = G.NumberOfVertices(); bool *visted = new bool[n]; for(int i=0;i<n;i++) { visted[i] = false; } DFS(G,v,visted); } template<typename T,typename E> void BFS(Graphlnk<T,E>& G,const T& v) { int n = G.NumberOfVertices(); bool *visted = new bool[n]; for(int i=0;i<n;i++) { visted[i] = false; } int i = G.getValuePos(v); queue<int> Q; Q.push(i); int index; while(!Q.empty()) { index = Q.front(); Q.pop(); if(!visted[index]) { cout<<G.getValue(index)<<endl; visted[index] = true; } int x = G.getFirstNeighbor(index); while(x!=-1) { if(!visted[x]) { Q.push(x); } x = G.getNextNeighbor(index,x); } } } template<typename T,typename E> void Search(Graphlnk<T,E> &G) { bool *visted = new bool[G.NumberOfVertices()]; for(int i=0;i<G.NumberOfVertices();i++) { if(!visted[i]) DFS(G,G.getValue(i),visted); } }
main.cpp:
#include <iostream> #include "main.h" using namespace std; template<typename T> class MinHeap { public: MinHeap(int sz) { Maxsize = sz; data = new T[sz]; Numsize = 0; } void Insert(T x) { data[Numsize++] = x; int n = Numsize/2; while(n>=0) { Sort(data,n); n--; } } void Swap(T *a,T *b) { T temp = *a; *a = *b; *b = temp; } T Remove() { T temp = data[0]; int n=Numsize; Numsize=0; for(int i=1;i<n;i++) { Insert(data[i]); } return temp; } void Sort(T a[],int n) { int i = n ; int j = 2*i+1; while(j<Numsize) { if(j+1<Numsize && a[j]>a[j+1]) j=j+1; if(j<Numsize && a[i]>a[j]) Swap(&a[i],&a[j]); i = j; j = 2*i+1; } } void Show() { for(int i=0;i<Numsize;i++) { cout<<data[i]<<" "; } cout<<endl; } private: T *data; int Maxsize; int Numsize; }; class UFset { public: UFset(int sz) { parent = new int[sz]; size = sz; for(int i=0;i<sz;i++) { parent[i]=-1; } } void Show() { for(int i=0;i<size;i++) { cout<<parent[i]<<" "; } cout<<endl; for(int j=0;j<size;j++) { cout<<j<<" "; } cout<<endl; } void Union(int a,int b) { int x = Find(a); int y = Find(b); if(x!=y) { if(x>y) { parent[x]+=parent[y]; parent[y]=x; } else { parent[y]+=parent[x]; parent[x]=y; } } } int Find(int x) { while(parent[x]>0) x=parent[x]; return x; } private: int *parent; int size; }; #define Default -1 const float maxValue = Default; template<typename T,typename E> struct MSTEdgeNode { int tail,head;E key; MSTEdgeNode():tail(-1),head(-1),key(0){} bool operator > (const MSTEdgeNode<T,E> &MST) { return key>MST.key; } bool operator < (const MSTEdgeNode<T,E> &MST) { return key<MST.key; } MSTEdgeNode& operator = (const MSTEdgeNode& MST) { tail = MST.tail; head = MST.head; key = MST.key; return *this; } }; template<typename T,typename E> class MinSpanTree { protected: MSTEdgeNode<T,E> *edgevalue; int MaxSize,n; public: MinSpanTree(int sz=Default-1):MaxSize(sz),n(0) { edgevalue = new MSTEdgeNode<T,E>[sz]; } int Insert(MSTEdgeNode<T,E>& item) { edgevalue[n++]=item; } void Show() { for(int i=0;i<n;i++) { cout<<edgevalue[i].tail<<":"<<edgevalue[i].head<<":"<<edgevalue[i].key<<" "; cout<<endl; } } }; template<typename T,typename E> void Kruskal(Graphlnk<T,E>& G,MinSpanTree<T,E> &MST) { MSTEdgeNode<T,E> ed;int u,v,count; int n = G.NumberOfVertices(); int m = G.NumberOfEdge(); MinHeap<MSTEdgeNode<T,E> >H(m); UFset F(n); for(u = 0;u<n;u++) { for( v = u+1;v<n;v++) { if(G.getWeight(u,v)!=maxValue) { ed.tail = u; ed.head = v; ed.key = G.getWeight(u,v); H.Insert(ed); //H.Show(); } } } count=1; while(count<m) { ed = H.Remove(); u = F.Find(ed.tail); v = F.Find(ed.head); if(u != v) { F.Union(u,v); MST.Insert(ed); } count++; } } int main() { MinSpanTree<char,int> mst(10); Graphlnk<char,int> gh; gh.insertVertex('A'); gh.insertVertex('B'); gh.insertVertex('C'); gh.insertVertex('D'); gh.insertVertex('E'); gh.insertVertex('F'); gh.insertVertex('G'); gh.insertEdge('A','B',28); gh.insertEdge('B','C',16); gh.insertEdge('C','D',12); gh.insertEdge('D','E',22); gh.insertEdge('E','F',25); gh.insertEdge('F','A',10); gh.insertEdge('B','G',14); gh.insertEdge('D','G',18); gh.insertEdge('E','G',24); gh.Show(); cout<<"-------------------"<<endl; Kruskal(gh,mst); mst.Show(); return 0; }
图的邻接表(广度优先遍历,深度优先遍历,最小生成树(Kruskal算法))
标签:
原文地址:http://blog.csdn.net/liuhuiyan_2014/article/details/45148699