标签:数据结构 performance
1.Ternary Search Tree较之于Trie Tree也是一种前缀树(prefix tree),主要用于存储字符串,再对大量字符串进行查询和存储(insert)操作时有非常好的性能;
2.Ternary Search Tree vs Trie Tree有更好的空间效率:所占内存更少,对于存储相同的字符串集;
3.Ternary Search Tree每个节点有三个指针,分别指向小于,等于,大于此节点值(字符串中的一个字符)的各个孩子节点;
4.Ternary Search Tree的查询和插入的时间复杂度是lg(N),N是树中的节点树。因此,它的操作性能不如Trie Tree;
5.使用场景,拼写正确性检查;给定字符串字典和当前词,寻找下一个最邻近的词(尽量相同的前缀,不同的字符有不等关系);
#ifndef _TERNARY_SEARCH_TREE_H_ #define _TERNARY_SEARCH_TREE_H_ /* * ternary search tree * */ class TernarySearchTree { public: // tree Node typedef struct tagTernaryNode { char data; char isLeaf; tagTernaryNode* leftChild; tagTernaryNode* midChild; tagTernaryNode* rightChild; tagTernaryNode():data(), isLeaf(), leftChild(0), midChild(0),rightChild(0) { } tagTernaryNode( char c ):data(c),isLeaf(), leftChild(0), midChild(0), rightChild(0) { } }TernaryNode, *pTernaryNode; /* * * */ TernarySearchTree():m_root(0),m_size(0) { } /* * * */ ~TernarySearchTree() { Clear(); } /* *Check empty * */ bool IsEmpty() const { return m_size == 0; } /* * Retrieve the number of node of tree * */ size_t Size() const { return m_size; } /* *Insert string to tree * */ void Insert( const char* word ) { Insert( m_root, word ); } /* *Search in term of given string * */ bool Search( const char* word ) { return Search( m_root, word ); } /* *Clear all node * */ void Clear() { Clear( m_root ); m_size = 0; } private: /* * Implement search operation * */ bool Search( pTernaryNode root, const char* word ) { if( 0 == root ) return false; if( root->data > *word ) { return Search( root->leftChild, word ); } else if( root->data < *word ) { return Search( root->rightChild, word ); } else { if( *(word + 1) == ‘\0‘ ) { return true; } else { return Search( root->midChild, word + 1 ); } } } /* * Implement insert operation * */ void Insert( pTernaryNode& root, const char* word ) { if( 0 == root ) { root = new TernaryNode( *word ); if( *(word + 1) == ‘\0‘ ) { m_size++; root->isLeaf = 1; return; } else if( root->data < *(word + 1) ) { Insert( root->rightChild, word + 1 ); } else if( root->data > *( word + 1) ) { Insert( root->leftChild, word + 1 ); } else { Insert( root->midChild, word + 1 ); } } if( root->data > *word ) { Insert( root->leftChild, word ); } else if( root->data < *word ) { Insert( root->rightChild, word ); } else { if( *(word + 1) == ‘\0‘ ) { root->isLeaf = 1; } else { Insert( root->midChild, word + 1 ); } } } /* * * */ void Clear( pTernaryNode& root ) { if( 0 == root ) { return; } Clear( root->leftChild ); Clear( root->midChild ); Clear( root->rightChild ); delete root; root = 0; } private: pTernaryNode m_root; size_t m_size; }; void TestTernarySearchTree() { char* words[] = {"the", "a", "there", "answer", "any", "by", "bye", "their", "ant", "these", "heap", "dynamic", "day", "micro", "meter", "mimic", "soul","such", "many", "metal", "year", "deed", "minifest", "theather", "mart", "meet", "mit", "polygon", "pool" }; size_t size = sizeof(words)/sizeof(words[0]); TernarySearchTree tree; for( int i = 0; i < size; i++ ) { tree.Insert( words[i] ); } for( int i = 0; i < size; i++ ) { assert( tree.Search( words[i] ) ); } assert( tree.Search("man") ); assert( tree.Search("mini") ); assert( tree.Search("met") ); assert( tree.Search("so" ) ); assert( !tree.Search("bee")); assert( !tree.Search("at") ); } #endif
Ternary Search Tree C++实现,码迷,mamicode.com
标签:数据结构 performance
原文地址:http://blog.csdn.net/manthink2005/article/details/24788131