标签:
Time Limit: 500MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
Input
Output
Sample Input
input | output |
---|---|
4 0 6 10 15 |
0.400 4.900 |
4 -2 -2 -2 -2 |
-2 0 |
arithmetic progression 等差数列的通式an=a1+(n-1)*d,即an=(a1-d)+n*d 是直线方程的形式,而(i,mi)是分布在直线两边的点,要求直线的 k=d,b=a1-d,于是想到最小二乘法,对Y=kX+b , 有 k=((XY)平--X平*Y平)/((X^2)平--(X平)^2), b=Y平--kX平。按公式求就好了。
#include<iostream> #include<iomanip> using namespace std; const int MAXN = 10005; double a[MAXN]; int main() { int n; while (cin >> n) { for (int i = 1; i <= n; i++) cin >> a[i]; double xy=0, x=0, y=0, x2=0; for (int i = 1; i <= n; i++) { xy = xy + a[i] * i; x = x + i; y = y + a[i]; x2 = x2 + i*i; } double k = (xy/n -(x/n)*(y/n)) / (x2/n - (x/n)*(x/n)); double b = y / n - k*(x / n); double a1 = b + k; double d = k; cout <<fixed<<setprecision(6)<< a1 << " " <<fixed<<setprecision(6)<<k << endl; } }
URAL - 1828 Approximation by a Progression(最小二乘法)
标签:
原文地址:http://blog.csdn.net/qq_18738333/article/details/45161771