码迷,mamicode.com
首页 > 数据库 > 详细

将Hive统计分析结果导入到MySQL数据库表中(一)——Sqoop导入方式

时间:2015-04-22 11:47:45      阅读:287      评论:0      收藏:0      [点我收藏+]

标签:

        最近在做一个交通流的数据分析,需求是对于海量的城市交通数据,需要使用MapReduce清洗后导入到HBase中存储,然后使用Hive外部表关联HBase,对HBase中数据进行查询、统计分析,将分析结果保存在一张Hive表中,最后使用Sqoop将该表中数据导入到MySQL中。整个流程大概如下:

       技术分享

下面我主要介绍Hive关联HBase表——Sqoop导出Hive表到MySQL这些流程,原始数据集收集、MapReduce清洗及WEB界面展示此处不介绍。

一、HBase数据库表

hbase(main):003:0> list
TABLE
transtable
1 row(s) in 0.0250 seconds

=> ["transtable"]
hbase(main):004:0> describe 'transtable'
DESCRIPTION                                                                                                        ENABLED
 'transtable', {NAME => 'jtxx', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VER true
 SIONS => '1', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS => 'false', BLO
 CKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.0480 seconds
创建一个名叫“transtable”的HBase表,列族是:“jtxx”。HBase中的部分数据如下:

hbase(main):008:0> get 'transtable','32108417000000013220140317000701'
COLUMN                                        CELL
 jtxx:cdbh                                    timestamp=1429597736296, value=03
 jtxx:clbj                                    timestamp=1429597736296, value=0
 jtxx:cllb                                    timestamp=1429597736296, value=0
 jtxx:cllx                                    timestamp=1429597736296, value=3
 jtxx:clsd                                    timestamp=1429597736296, value=127.00
 jtxx:hphm                                    timestamp=1429597736296, value=\xE8\x8B\x8FKYV152
 jtxx:wflx                                    timestamp=1429597736296, value=0
 jtxx:xsfx                                    timestamp=1429597736296, value=03
8 row(s) in 0.1550 seconds

二、创建Hive外部表关联HBase表

create external table transJtxx_Hbase
 (
    clxxbh string,
    xsfx string,
    cdbh string,
    hphm string,
    clsd string,
    cllx string,
    clbj string,
    cllb string,
    wflx string
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 
with serdeproperties ("hbase.columns.mapping" =":key,jtxx:xsfx,jtxx:cdbh,jtxx:hphm,jtxx:clsd,jtxx:cllx,jtxx:clbj,jtxx:cllb,jtxx:wflx") TBLPROPERTIES ("hbase.table.name" = "transtable");

hbase.columns.mapping要对应hbase数据库transtable表中列族下的列限定符。此处一定要是外部表

查看是否关联成功,如何执行一条语句能够查询出HBase表中数据,则关联成功。

hive> select *  from transjtxx_hbase where clxxbh like '321084170000000132%';
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1428394594787_0007, Tracking URL = http://secondmgt:8088/proxy/application_1428394594787_0007/
Kill Command = /home/hadoopUser/cloud/hadoop/programs/hadoop-2.2.0/bin/hadoop job  -kill job_1428394594787_0007
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2015-04-21 17:27:18,136 Stage-1 map = 0%,  reduce = 0%
2015-04-21 17:27:35,029 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 12.31 sec
MapReduce Total cumulative CPU time: 12 seconds 310 msec
Ended Job = job_1428394594787_0007
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 12.31 sec   HDFS Read: 256 HDFS Write: 636 SUCCESS
Total MapReduce CPU Time Spent: 12 seconds 310 msec
OK
32108417000000013220140317000701        03      03      苏KYV152        127.00  3       0       0       0
32108417000000013220140317000705        02      03      苏KRU593        127.00  2       0       0       0
32108417000000013220140317000857        03      02      苏KYL920        28.00   4       0       0       0
32108417000000013220140317001145        02      02      苏K19V75        136.00  6       0       0       0
32108417000000013220140317001157        02      02      鲁QV0897        150.00  4       0       0       0
32108417000000013220140317001726        02      02      苏KL2938        23.00   1       0       0       0
32108417000000013220140317001836        02      02      苏J5S373        142.00  4       0       0       0
32108417000000013220140317001844        02      02      苏KK8332        158.00  3       0       0       0
32108417000000013220140317002039        03      02      苏KK8820        17.00   0       0       0       0
32108417000000013220140317002206        03      03      苏KK8902        32.00   4       0       0       0
Time taken: 36.018 seconds, Fetched: 10 row(s)
三、创建用于存放查询、统计分析结果的Hive表

因为此处我是模拟环境,所以我创建一个和hive关联表transjtxx_hbase一样字段类型的表,用于存放查询结果,如下:

hive> create table temptrans
    > (clxxbh string,
    >     xsfx string,
    >     cdbh string,
    >     hphm string,
    >     clsd string,
    >     cllx string,
    >     clbj string,
    >     cllb string,
    >     wflx string
    > ) ;
OK
Time taken: 0.112 seconds

四、通过查询结果向Hive表中插入数据

        使用Hive表四种数据导入方式之一——通过SQL查询语句向Hive表中插入数据。(详细介绍可以查看我的另外一篇博文:Hive表中四种不同数据导出方式以及如何自定义导出列分隔符)此处我以查询某个路口过往车辆为例。因为,clxxbh是由路口编号+日期组成,此处不使用overwrite,是因为后续会循环执行,之前导入的数据需要保留,所以必须使用into,如下:

hive> insert into table temptrans select *  from transjtxx_hbase where clxxbh like '321084170000000133%';
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1428394594787_0009, Tracking URL = http://secondmgt:8088/proxy/application_1428394594787_0009/
Kill Command = /home/hadoopUser/cloud/hadoop/programs/hadoop-2.2.0/bin/hadoop job  -kill job_1428394594787_0009
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2015-04-21 19:05:03,398 Stage-1 map = 0%,  reduce = 0%
2015-04-21 19:05:24,091 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 12.71 sec
MapReduce Total cumulative CPU time: 12 seconds 710 msec
Ended Job = job_1428394594787_0009
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to: hdfs://secondmgt:8020/hive/scratchdir/hive_2015-04-21_19-04-48_325_2835499611469580351-1/-ext-10000
Loading data to table hive.temptrans
Table hive.temptrans stats: [numFiles=2, numRows=12, totalSize=1380, rawDataSize=732]
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 12.71 sec   HDFS Read: 256 HDFS Write: 815 SUCCESS
Total MapReduce CPU Time Spent: 12 seconds 710 msec
OK
Time taken: 37.229 seconds
hive> select * from tempTrans;
OK
32108417000000013220140317000701        03      03      苏KYV152        127.00  3       0       0       0
32108417000000013220140317000705        02      03      苏KRU593        127.00  2       0       0       0
32108417000000013220140317000857        03      02      苏KYL920        28.00   4       0       0       0
32108417000000013220140317001145        02      02      苏K19V75        136.00  6       0       0       0
32108417000000013220140317001157        02      02      鲁QV0897        150.00  4       0       0       0
32108417000000013220140317001726        02      02      苏KL2938        23.00   1       0       0       0
32108417000000013220140317001836        02      02      苏J5S373        142.00  4       0       0       0
32108417000000013220140317001844        02      02      苏KK8332        158.00  3       0       0       0
32108417000000013220140317002039        03      02      苏KK8820        17.00   0       0       0       0
32108417000000013220140317002206        03      03      苏KK8902        32.00   4       0       0       0
32108417000000013320140317000120        02      02      苏KRW076        0.00    7       0       0       0
32108417000000013320140317000206        00      02      苏AHF730        0.00    4       0       0       0
32108417000000013320140317000207        02      02      苏KYJ792        0.00    6       0       0       0
32108417000000013320140317000530        00      01      苏K53T85        0.00    1       0       0       0
32108417000000013320140317000548        03      01      苏KR0737        0.00    7       0       0       0
32108417000000013320140317000605        03      02      苏KYU203        0.00    1       0       0       0
32108417000000013320140317000659        01      02      苏K3R762        0.00    4       0       0       0
32108417000000013320140317001042        02      03      苏KYK578        0.00    6       0       0       0
32108417000000013320140317001222        02      03      苏KK8385        0.00    2       0       0       0
32108417000000013320140317001418        02      03      苏K26F89        0.00    7       0       0       0
32108417000000013320140317001538        02      03      苏KK8987        0.00    5       0       0       0
32108417000000013320140317001732        01      01      苏KYB127        0.00    7       0       0       0
Time taken: 0.055 seconds, Fetched: 22 row(s)
五、创建用于导入数据的MySQL数据库及其表

mysql> create database transport;
Query OK, 1 row affected (0.00 sec)

mysql> use transport;
Database changed
mysql> create table jtxx
    -> (
    ->   clxxbh varchar(64) not null primary key,
    ->   xsfx varchar(2),
    ->   cdbh varchar(4),
    ->   hphm varchar(32),
    ->   clsd varchar(16),
    ->   cllx varchar(2),
    ->   clbj varchar(8),
    ->   cllb varchar(8),
    ->   wflx varchar(8)
    -> );
Query OK, 0 rows affected (0.04 sec)

mysql> show tables;
+---------------------+
| Tables_in_transport |
+---------------------+
| jtxx                |
+---------------------+
1 row in set (0.00 sec)

mysql> select * from jtxx;
Empty set (0.00 sec)

此处创建MySQL表的时候,一定要注意字段名称要和Hive表中对应

六、Sqoop将Hive表数据导入到MySQL中

[hadoopUser@secondmgt ~]$ sqoop-export --connect jdbc:mysql://secondmgt:3306/transport --username hive --password hive --table jtxx --export-dir /hive/warehouse/hive.db/temptrans 

 使用以上导出命令会报如下错误:

15/04/21 19:38:52 INFO mapreduce.Job: Task Id : attempt_1428394594787_0010_m_000001_0, Status : FAILED
Error: java.io.IOException: Can't export data, please check task tracker logs
        at org.apache.sqoop.mapreduce.TextExportMapper.map(TextExportMapper.java:112)
        at org.apache.sqoop.mapreduce.TextExportMapper.map(TextExportMapper.java:39)
        at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
        at org.apache.sqoop.mapreduce.AutoProgressMapper.run(AutoProgressMapper.java:64)
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:763)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:339)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157)
Caused by: java.util.NoSuchElementException
        at java.util.ArrayList$Itr.next(ArrayList.java:834)
        at jtxx.__loadFromFields(jtxx.java:387)
        at jtxx.parse(jtxx.java:336)
        at org.apache.sqoop.mapreduce.TextExportMapper.map(TextExportMapper.java:83)
        ... 10 more

这个错误的原因是指定Hive中表字段之间使用的分隔符错误,供Sqoop读取解析不正确。如果是由hive执行mapreduce操作汇总的结果,默认的分隔符是 ‘\001‘,否则如果是从HDFS文件导入的则分隔符则应该是‘\t‘。此处我是hive执行mapreduce分析汇总的结果,所以默认的分隔是‘\001‘。Sqoop命令修改如下,指定分隔符:

[hadoopUser@secondmgt ~]$ sqoop-export --connect jdbc:mysql://secondmgt:3306/transport --username hive --password hive --table jtxx --export-dir /hive/warehouse/hive.db/temptrans --input-fields-terminated-by '\001'
 注意:

此处的Sqoop导出命令,当MySQL数据库中对应表为空,无数据的时候可以成功执行,但是当里面有数据,即从Hive表中需要导出的数据字段中,和MySQL表中关键字有重复的记录时候,进程会死住,不再往下执行,查看Hadoop任务界面出现内存被大部分占用,队列被占100%占用情况,如下:

[hadoopUser@secondmgt ~]$ sqoop-export --connect jdbc:mysql://secondmgt:3306/transport --username hive --password hive --table jtxx --export-dir /hive/warehouse/hive.db/temptrans --input-fields-terminated-by '\001'
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
15/04/21 20:08:28 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
15/04/21 20:08:28 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
15/04/21 20:08:28 INFO tool.CodeGenTool: Beginning code generation
15/04/21 20:08:29 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `jtxx` AS t LIMIT 1
15/04/21 20:08:29 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `jtxx` AS t LIMIT 1
15/04/21 20:08:29 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoopUser/cloud/hadoop/programs/hadoop-2.2.0
Note: /tmp/sqoop-hadoopUser/compile/67173774b957b511b4d62bc4ebe56e23/jtxx.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
15/04/21 20:08:30 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoopUser/compile/67173774b957b511b4d62bc4ebe56e23/jtxx.jar
15/04/21 20:08:30 INFO mapreduce.ExportJobBase: Beginning export of jtxx
15/04/21 20:08:30 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoopUser/cloud/hadoop/programs/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoopUser/cloud/hbase/hbase-0.96.2-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
15/04/21 20:08:30 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
15/04/21 20:08:31 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
15/04/21 20:08:31 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
15/04/21 20:08:31 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
15/04/21 20:08:31 INFO client.RMProxy: Connecting to ResourceManager at secondmgt/192.168.2.133:8032
15/04/21 20:08:32 INFO input.FileInputFormat: Total input paths to process : 2
15/04/21 20:08:32 INFO input.FileInputFormat: Total input paths to process : 2
15/04/21 20:08:32 INFO mapreduce.JobSubmitter: number of splits:3
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
15/04/21 20:08:32 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
15/04/21 20:08:32 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
15/04/21 20:08:32 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
15/04/21 20:08:32 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
15/04/21 20:08:32 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
15/04/21 20:08:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1428394594787_0016
15/04/21 20:08:33 INFO impl.YarnClientImpl: Submitted application application_1428394594787_0016 to ResourceManager at secondmgt/192.168.2.133:8032
15/04/21 20:08:33 INFO mapreduce.Job: The url to track the job: http://secondmgt:8088/proxy/application_1428394594787_0016/
15/04/21 20:08:33 INFO mapreduce.Job: Running job: job_1428394594787_0016

sqoop任务无法提交,一直处于以上状态无法继续执行,查看Hadoop任务界面,出现如下情况,队列被100%占用:

技术分享

解决办法:

1、查看Hadoop正在运行的进程有哪些,hadoop job -list

2、杀死僵尸进程,hadoop job -kill [job-id]

3、修改Sqoop执行命令如下:

sqoop-export --connect jdbc:mysql://secondmgt:3306/transport --username hive --password hive --table jtxx  --update-key clxxbh --
update-mode allowinsert --export-dir /hive/warehouse/hive.db/temptrans  --input-fields-terminated-by '\001'
        添加了两个参数:--update-key clxxbh    --update-mode allowinsert,前面一个表示如果后期导入的数据关键字和MySQL数据库中数据存在相同的,则更新该行记录,后一个表示将目标数据库中原来不存在的数据也导入到数据库表中,即存在的数据保留,新的数据插入,它后接另一个选项是updateonly,即只更新数据,不插入新数据。详细介绍,查看另外一篇博文( Sqoop1.4.4将文件数据集从HDFS中导出到MySQL数据库表中

    

将Hive统计分析结果导入到MySQL数据库表中(一)——Sqoop导入方式

标签:

原文地址:http://blog.csdn.net/niityzu/article/details/45190787

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!