标签:
最近在补看《C++ Primer Plus》第六版,这的确是本好书,其中关于智能指针的章节解析的非常清晰,一解我以前的多处困惑。C++面试过程中,很多面试官都喜欢问智能指针相关的问题,比如你知道哪些智能指针?shared_ptr的设计原理是什么?如果让你自己设计一个智能指针,你如何完成?等等……。而且在看开源的C++项目时,也能随处看到智能指针的影子。这说明智能指针不仅是面试官爱问的题材,更是非常有实用价值。
下面是我在看智能指针时所做的笔记,希望能够解决你对智能指针的一些困扰。
我们先来看一个简单的例子:
1 void remodel(std::string & str) 2 { 3 std::string * ps = new std::string(str); 4 ... 5 if (weird_thing()) 6 throw exception(); 7 str = *ps; 8 delete ps; 9 return; 10 }
当出现异常时(weird_thing()返回true),delete将不被执行,因此将导致内存泄露。
如何避免这种问题?有人会说,这还不简单,直接在throw exception();
之前加上delete ps;
不就行了。是的,你本应如此,问题是很多人都会忘记在适当的地方加上delete语句(连上述代码中最后的那句delete语句也会有很多人忘记吧),如果你要对一个庞大的工程进行review,看是否有这种潜在的内存泄露问题,那就是一场灾难!
这时我们会想:当remodel这样的函数终止(不管是正常终止,还是由于出现了异常而终止),本地变量都将自动从栈内存中删除—因此指针ps占据的内存将被释放,如果ps指向的内存也被自动释放,那该有多好啊。
我们知道析构函数有这个功能。如果ps有一个析构函数,该析构函数将在ps过期时自动释放它指向的内存。但ps的问题在于,它只是一个常规指针,不是有析构凼数的类对象指针。如果它指向的是对象,则可以在对象过期时,让它的析构函数删除指向的内存。
这正是 auto_ptr、unique_ptr和shared_ptr这几个智能指针背后的设计思想。我简单的总结下就是:将基本类型指针封装为类对象指针(这个类肯定是个模板,以适应不同基本类型的需求),并在析构函数里编写delete语句删除指针指向的内存空间。
因此,要转换remodel()函数,应按下面3个步骤进行:
下面是使用auto_ptr修改该函数的结果:
1 # include <memory> 2 void remodel (std::string & str) 3 { 4 std::auto_ptr<std::string> ps (new std::string(str)); 5 ... 6 if (weird_thing ()) 7 throw exception(); 8 str = *ps; 9 // delete ps; NO LONGER NEEDED 10 return; 11 }
STL一共给我们提供了四种智能指针:auto_ptr、unique_ptr、shared_ptr和weak_ptr(本文章暂不讨论)。
模板auto_ptr是C++98提供的解决方案,C+11已将将其摒弃,并提供了另外两种解决方案。然而,虽然auto_ptr被摒弃,但它已使用了好多年:同时,如果您的编译器不支持其他两种解决力案,auto_ptr将是唯一的选择。
使用注意点
1 templet<class T> 2 class auto_ptr { 3 explicit auto_ptr(X* p = 0) ; 4 ... 5 };
因此不能自动将指针转换为智能指针对象,必须显式调用:
1 shared_ptr<double> pd; 2 double *p_reg = new double; 3 pd = p_reg; // not allowed (implicit conversion) 4 pd = shared_ptr<double>(p_reg); // allowed (explicit conversion) 5 shared_ptr<double> pshared = p_reg; // not allowed (implicit conversion) 6 shared_ptr<double> pshared(p_reg); // allowed (explicit conversion)
1 string vacation("I wandered lonely as a cloud."); 2 shared_ptr<string> pvac(&vacation); // No
使用举例
1 #include <iostream> 2 #include <string> 3 #include <memory> 4 5 class report 6 { 7 private: 8 std::string str; 9 public: 10 report(const std::string s) : str(s) { 11 std::cout << "Object created.\n"; 12 } 13 ~report() { 14 std::cout << "Object deleted.\n"; 15 } 16 void comment() const { 17 std::cout << str << "\n"; 18 } 19 }; 20 21 int main() { 22 { 23 std::auto_ptr<report> ps(new report("using auto ptr")); 24 ps->comment(); 25 } 26 27 { 28 std::shared_ptr<report> ps(new report("using shared ptr")); 29 ps->comment(); 30 } 31 32 { 33 std::unique_ptr<report> ps(new report("using unique ptr")); 34 ps->comment(); 35 } 36 return 0; 37 }
先来看下面的赋值语句:
1 auto_ptr< string> ps (new string ("I reigned lonely as a cloud.”); 2 auto_ptr<string> vocation; 3 vocaticn = ps;
上述赋值语句将完成什么工作呢?如果ps和vocation是常规指针,则两个指针将指向同一个string对象。这是不能接受的,因为程序将试图删除同一个对象两次——一次是ps过期时,另一次是vocation过期时。要避免这种问题,方法有多种:
当然,同样的策略也适用于复制构造函数。
每种方法都有其用途,但为何说要摒弃auto_ptr呢?
下面举个例子来说明。
1 #include <iostream> 2 #include <string> 3 #include <memory> 4 using namespace std; 5 6 int main() { 7 auto_ptr<string> films[5] = 8 { 9 auto_ptr<string> (new string("Fowl Balls")), 10 auto_ptr<string> (new string("Duck Walks")), 11 auto_ptr<string> (new string("Chicken Runs")), 12 auto_ptr<string> (new string("Turkey Errors")), 13 auto_ptr<string> (new string("Goose Eggs")) 14 }; 15 auto_ptr<string> pwin; 16 pwin = films[2]; // films[2] loses ownership. 将所有权从films[2]转让给pwin,此时films[2]不再引用该字符串从而变成空指针 17 18 cout << "The nominees for best avian baseballl film are\n"; 19 for(int i = 0; i < 5; ++i) 20 cout << *films[i] << endl; 21 cout << "The winner is " << *pwin << endl; 22 cin.get(); 23 24 return 0; 25 }
运行下发现程序崩溃了,原因在上面注释已经说的很清楚,films[2]已经是空指针了,下面输出访问空指针当然会崩溃了。但这里如果把auto_ptr换成shared_ptr或unique_ptr后,程序就不会崩溃,原因如下:
1 unique_ptr<string> pwin; 2 pwin = films[2]; // films[2] loses ownership.
这就是为何要摒弃auto_ptr的原因,一句话总结就是:避免潜在的内存崩溃问题。
可能大家认为前面的例子已经说明了unique_ptr为何优于auto_ptr,也就是安全问题,下面再叙述的清晰一点。
请看下面的语句:
1 auto_ptr<string> p1(new string ("auto") ; //#1 2 auto_ptr<string> p2; //#2 3 p2 = p1;
在语句#3中,p2接管string对象的所有权后,p1的所有权将被剥夺。前面说过,这是好事,可防止p1和p2的析构函数试图刪同—个对象;
但如果程序随后试图使用p1,这将是件坏事,因为p1不再指向有效的数据。
下面来看使用unique_ptr的情况:
1 unique_ptr<string> p3 (new string ("auto"); //#4 2 unique_ptr<string> p4; //#5 3 p4 = p3;
编译器认为语句#6非法,避免了p3不再指向有效数据的问题。因此,unique_ptr比auto_ptr更安全。
但unique_ptr还有更聪明的地方。
有时候,会将一个智能指针赋给另一个并不会留下危险的悬挂指针。假设有如下函数定义:
1 unique_ptr<string> demo(const char * s) 2 { 3 unique_ptr<string> temp (new string (s)); 4 return temp; 5 }
并假设编写了如下代码:
1 unique_ptr<string> ps; 2 ps = demo(‘Uniquely special");
demo()返回一个临时unique_ptr,然后ps接管了原本归返回的unique_ptr所有的对象,而返回时临时的 unique_ptr 被销毁,也就是说没有机会使用 unique_ptr 来访问无效的数据,换句话来说,这种赋值是不会出现任何问题的,即没有理由禁止这种赋值。实际上,编译器确实允许这种赋值,这正是unique_ptr更聪明的地方。
总之,党程序试图将一个 unique_ptr 赋值给另一个时,如果源 unique_ptr 是个临时右值,编译器允许这么做;如果源 unique_ptr 将存在一段时间,编译器将禁止这么做,比如:
1 unique_ptr<string> pu1(new string ("hello world")); 2 unique_ptr<string> pu2; 3 pu2 = pu1; // #1 not allowed 4 unique_ptr<string> pu3; 5 pu3 = unique_ptr<string>(new string ("You")); // #2 allowed
其中#1留下悬挂的unique_ptr(pu1),这可能导致危害。而#2不会留下悬挂的unique_ptr,因为它调用 unique_ptr 的构造函数,该构造函数创建的临时对象在其所有权让给 pu3 后就会被销毁。这种随情况而已的行为表明,unique_ptr 优于允许两种赋值的auto_ptr 。
当然,您可能确实想执行类似于#1的操作,仅当以非智能的方式使用摒弃的智能指针时(如解除引用时),这种赋值才不安全。要安全的重用这种指针,可给它赋新值。C++有一个标准库函数std::move(),让你能够将一个unique_ptr赋给另一个。下面是一个使用前述demo()函数的例子,该函数返回一个unique_ptr<string>对象:
使用move后,原来的指针仍转让所有权变成空指针,可以对其重新赋值。
1 unique_ptr<string> ps1, ps2; 2 ps1 = demo("hello"); 3 ps2 = move(ps1); 4 ps1 = demo("alexia"); 5 cout << *ps2 << *ps1 << endl;
在掌握了这几种智能指针后,应使用哪种智能指针呢?
(1)如果程序要使用多个指向同一个对象的指针,应选择shared_ptr。这样的情况包括:
有一个指针数组,并使用一些辅助指针来标示特定的元素,如最大的元素和最小的元素;
两个对象包含都指向第三个对象的指针;
STL容器包含指针。
很多STL算法都支持复制和赋值操作,这些操作可用于shared_ptr,但不能用于unique_ptr(编译器发出warning)和auto_ptr(行为不确定)。如果你的编译器没有提供shared_ptr,可使用Boost库提供的shared_ptr。
(2)如果程序不需要多个指向同一个对象的指针,则可使用unique_ptr。如果函数使用new分配内存,并返还指向该内存的指针,将其返回类型声明为unique_ptr是不错的选择。这样,所有权转让给接受返回值的unique_ptr,而该智能指针将负责调用delete。可将unique_ptr存储到STL容器在那个,只要不调用将一个unique_ptr复制或赋给另一个算法(如sort())。例如,可在程序中石油类似于下面的代码段。
1 unique_ptr<int> make_int(int n) 2 { 3 return unique_ptr<int>(new int(n)); 4 } 5 void show(unique_ptr<int> &p1) 6 { 7 cout << *a << ‘ ‘; 8 } 9 int main() 10 { 11 ... 12 vector<unique_ptr<int> > vp(size); 13 for(int i = 0; i < vp.size(); i++) 14 vp[i] = make_int(rand() % 1000); // copy temporary unique_ptr 15 vp.push_back(make_int(rand() % 1000)); // ok because arg is temporary 16 for_each(vp.begin(), vp.end(), show); // use for_each() 17 ... 18 }
其中push_back调用没有问题,因为它返回一个临时unique_ptr,该unique_ptr被赋给vp中的一个unique_ptr。另外,如果按值而不是按引用给show()传递对象,for_each()将非法,因为这将导致使用一个来自vp的非临时unique_ptr初始化pi,而这是不允许的。前面说过,编译器将发现错误使用unique_ptr的企图。
在unique_ptr为右值时,可将其赋给shared_ptr,这与将一个unique_ptr赋给一个需要满足的条件相同。与前面一样,在下面的代码中,make_int()的返回类型为unique_ptr<int>:
1 unique_ptr<int> pup(make_int(rand() % 1000)); // ok 2 shared_ptr<int> spp(pup); // not allowed, pup as lvalue 3 shared_ptr<int> spr(make_int(rand() % 1000)); // ok
标签:
原文地址:http://www.cnblogs.com/xymqx/p/4450912.html