标签:
下面是内存篇章的学习笔记,部分内容与前面的性能优化典范有重合,欢迎大家一起学习交流!
众所周知,与C/C++需要通过手动编码来申请以及释放内存有所不同,Java拥有GC的机制。Android系统里面有一个Generational Heap Memory的 模型,系统会根据内存中不同的内存数据类型分别执行不同的GC操作。例如,最近刚分配的对象会放在Young Generation区域,这个区域的对象通常都是会快速被创建并且很快被销毁回收的,同时这个区域的GC操作速度也是比Old Generation区域的GC操作速度更快的。
除了速度差异之外,执行GC操作的时候,所有线程的任何操作都会需要暂停,等待GC操作完成之后,其他操作才能够继续运行。
通常来说,单个的GC并不会占用太多时间,但是大量不停的GC操作则会显著占用帧间隔时间(16ms)。如果在帧间隔时间里面做了过多的GC操作,那么自然其他类似计算,渲染等操作的可用时间就变得少了。
Android Studio中的Memory Monitor可以很好的帮助我们查看程序的内存使用情况。
内存泄漏表示的是不再用到的对象因为被错误引用而无法进行回收。
发生内存泄漏会导致Memory Generation中的剩余可用Heap Size越来越小,这样会导致频繁触发GC,更进一步引起性能问题。
举例内存泄漏,下面init()
方法来自某个自定义View:
1 2 3 4 | private void init() { ListenerCollector collector = new ListenerCollector(); collector.setListener( this , mListener); } |
上面的例子容易存在内存泄漏,如果activity因为设备翻转而重新创建,自定义的View会自动重新把新创建出来的mListener给绑定到ListenerCollector中,但是当activity被销毁的时候,mListener却无法被回收了。
下图演示了Android Tools里面的Heap Viewer的功能,我们可以看到当前进程中的Heap Size的情况,分别有哪些类型的数据,占比是多少。
Memory Churn内存抖动,内存抖动是因为在短时间内大量的对象被创建又马上被释放。瞬间产生大量的对 象会严重占用Young Generation的内存区域,当达到阀值,剩余空间不够的时候,会触发GC从而导致刚产生的对象又很快被回收。即使每次分配的对象占用了很少的内存, 但是他们叠加在一起会增加Heap的压力,从而触发更多其他类型的GC。这个操作有可能会影响到帧率,并使得用户感知到性能问题。
解决上面的问题有简洁直观方法,如果你在Memory Monitor里面查看到短时间发生了多次内存的涨跌,这意味着很有可能发生了内存抖动。
同时我们还可以通过Allocation Tracker来查看在短时间内,同一个栈中不断进出的相同对象。这是内存抖动的典型信号之一。
当你大致定位问题之后,接下去的问题修复也就显得相对直接简单了。例如,你需要避免在for循环里面分配对象占用内存,需要尝试把对象的创建移到循 环体之外,自定义View中的onDraw方法也需要引起注意,每次屏幕发生绘制以及动画执行过程中,onDraw方法都会被调用到,避免在onDraw 方法里面执行复杂的操作,避免创建对象。对于那些无法避免需要创建对象的情况,我们可以考虑对象池模型,通过对象池来解决频繁创建与销毁的问题,但是这里 需要注意结束使用之后,需要手动释放对象池中的对象。
关于Allocation Tracker工具的使用,不展开了,参考下面的链接:
http://developer.android.com/tools/debugging/ddms.html#alloc
http://android-developers.blogspot.com/2009/02/track-memory-allocations.html
下面演示一个例子,如何通过修改代码来避免内存抖动。优化之前的内存检测图:
定位代码之后,修复了String拼接的问题:
优化之后的内存监测图:
上面提到了三种测量内存的工具,下面再简要概括一下他们各自的特点:
Memory Monitor:跟踪整个app的内存变化情况。
Heap Viewer:查看当前内存快照,便于对比分析哪些对象有可能发生了泄漏。
Allocation Tracker:追踪内存对象的来源。
标签:
原文地址:http://www.cnblogs.com/flyme2012/p/dd1b11a4ea151458d77411f5e99bc0dc.html