码迷,mamicode.com
首页 > 编程语言 > 详细

SVM算法实现(一)

时间:2015-04-30 14:04:47      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:

关键字(keywords):SVM 支持向量机 SMO算法 实现 机器学习    

 

      假设对SVM原理不是非常懂的,能够先看一下入门的视频,对帮助理解非常实用的,然后再深入一点能够看看这几篇入门文章,作者写得挺具体,看完以后SVM的基础就了解得差点儿相同了,再然后买本《支持向量机导论》作者是Nello Cristianini 和 John Shawe-Taylor,电子工业出版社的。然后把书本后面的那个SMO算法实现就基本上弄懂了SVM是怎么一回事,最后再编写一个SVM库出来,比方说像libsvm等工具使用,呵呵,差点儿相同就这样。这些是我学习SVM的整个过程,也算是经验吧。

      以下是SVM的简化版SMO算法,我将结合Java代码来解释一下整个SVM的学习训练过程,即所谓的train训练过程。那么什么是SMO算法呢?

 SMO算法的目的无非是找出一个函数f(x),这个函数能让我们把输入的数据x进行分类。既然是分类肯定须要一个评判的标准,比方分出来有两种情况A和B,那么怎么样才干说x是属于A类的,或不是B类的呢?就是须要有个边界,就好像两个国家一样有边界,假设边界越明显,则就越easy区分,因此,我们的目标是最大化边界的宽度,使得很easy的区分是A类还是B类。

 在SVM中,要最大化边界则须要最小化这个数值:

 

 技术分享

w:是參量,值越大边界越明显
C代表惩处系数,即假设某个x是属于某一类,可是它偏离了该类,跑到边界上后者其它类的地方去了,C越大表明越不想放弃这个点,边界就会缩小
技术分享代表:松散变量
但问题似乎还不好解,又由于SVM是一个凸二次规划问题,凸二次规划问题有最优解,于是问题转换成下列形式(KKT条件):

 技术分享…………(1)

这里的ai是拉格朗日乘子(问题通过拉格朗日乘法数来求解)
对于(a)的情况,表明ai是正常分类,在边界内部(我们知道正确分类的点yi*f(xi)>=0)
对于(b)的情况,表明了ai是支持向量,在边界上
对于(c)的情况,表明了ai是在两条边界之间
而最优解须要满足KKT条件,即满足(a)(b)(c)条件都满足
下面几种情况出现将会出现不满足:

yiui<=1可是ai<C则是不满足的,而原本ai=C
yiui>=1可是ai>0则是不满足的而原本ai=0
yiui=1可是ai=0或者ai=C则表明不满足的,而原本应该是0<ai<C
所以要找出不满足KKT的这些ai,并更新这些ai,但这些ai又受到另外一个约束,即

 

 技术分享

因此,我们通过还有一个方法,即同一时候更新ai和aj,满足下面等式

 

技术分享

就能保证和为0的约束。

 

利用yiai+yjaj=常数,消去ai,可得到一个关于单变量aj的一个凸二次规划问题,不考虑其约束0<=aj<=C,能够得其解为:

 

技术分享 ………………………………………(2)

这里技术分享………………(3)

表示旧值,然后考虑约束0<=aj<=C可得到a的解析解为:

技术分享…………(4)

技术分享

对于技术分享

那么怎样求得ai和aj呢?

对于ai,即第一个乘子,能够通过刚刚说的那几种不满足KKT的条件来找,第二个乘子aj能够找满足条件 

 

技术分享…………………………………………………………………………(5)

b的更新:技术分享

在满足条件:技术分享下更新b。……………(6)

 

最后更新全部ai,y和b,这样模型就出来了,然后通过函数:

 技术分享……………………………………………………(7)

输入是x,是一个数组,组中每个值表示一个特征。

输出是A类还是B类。(正类还是负类)

 

下面是基本的代码段:

 

执行后的结果还算能够吧,測试数据主要是用了libsvm的heart_scale的数据。

预測的正确率达到73%以上。

假设我把核函数从线性的改为基于RBF将会更好点。

最后,说到SVM算法实现包,应该有非常多,包含svm light,libsvm,有matlab本身自带的svm工具包等。

 

 

 

另外,完整的代码,我将上传到CSDN下载地址上提供下载。

点击这里下载

 

如理解有误敬请指正!谢谢!

我的邮箱:chen-hongqin@163.com

我的其它博客:

百度:http://hi.baidu.com/futrueboy/home

javaeye:http://futrueboy.javaeye.com/

CSDN: http://blog.csdn.net/techq

 

SVM算法实现(一)

标签:

原文地址:http://www.cnblogs.com/hrhguanli/p/4468543.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!