码迷,mamicode.com
首页 > Windows程序 > 详细

【C#】 25. 根据Option组成的投资组合的payoff,识别组成成分

时间:2015-05-01 09:26:10      阅读:310      评论:0      收藏:0      [点我收藏+]

标签:solver   financial markets   金融   c#   

今天终于做了一个很久之前就想完成的option应用!

假设现在有一个全部由Option构成的投资组合,这些option的underlying都是同一个股票,有相同的maturity。

在Excel中写个函数,它可以根据portfolio在不同underlying price时的Payoff来识别投资组合中各个option组成。

技术分享

上图左边的表格就是Input,Payoff图在其下方(strangle);而右边的表格就是计算得到的结果,我写的这个函数名字为 OpTypeStrikeContractNum


using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ExcelDna.Integration;
using FinMktReverseEngineering;
using Excel = Microsoft.Office.Interop.Excel;
using System.Runtime.InteropServices;
using Microsoft.SolverFoundation.Services;
using Microsoft.SolverFoundation.Solvers;


namespace OptionFunctions
{
    //Solver Class for calculate the contract number for options
    public class CSolver
    {
        private double[] interpolatedStockPrice;
        private double[] interpolatedTargetPayoffs;
        private Option[] options;
        private int optionNum;
        //Constructor
        public CSolver(Option[] Options,double[] InterpolatedTargetPayoffs, double[] InterpolatedStockPrice)
        {
            this.options = Options;
            this.interpolatedTargetPayoffs = InterpolatedTargetPayoffs;
            this.interpolatedStockPrice = InterpolatedStockPrice;
            this.optionNum = options.Length;
        }


        //Target Function
        public double TargetFunction(double[] ContractNum)
        {
            double sum2OfDiff=0.0;
            double sum2OfContractNum=0.0;
            double totalPayoff;
            for (int i = 0; i < interpolatedStockPrice.Length; i++)
            {
                totalPayoff = 0.0;
                for (int j = 0;  j < options.Length;  j++)
                {
                    totalPayoff+= options[j].Payoff(interpolatedStockPrice[i]) * ContractNum[j];
                    sum2OfContractNum += Math.Pow(ContractNum[j]-Math.Round(ContractNum[j],0), 2);  //Very important! To avoid trivial answers!!!
                }
                sum2OfDiff += Math.Pow(interpolatedTargetPayoffs[i] - totalPayoff, 2);   //Residuals^2
            }


            return sum2OfDiff+sum2OfContractNum;
        }


        //Solver
        internal double[] IndidualSolve()
        {
            var hls = new HybridLocalSearchSolver();
            int[] contractNumID = new int[optionNum];
            double[] results=new double[optionNum];
            //Add variable in the solver
            for (int i = 0; i < contractNumID.Length; i++)
            {
                hls.AddVariable(out contractNumID[i],
                    Microsoft.SolverFoundation.Common.Rational.NegativeInfinity,
                    Microsoft.SolverFoundation.Common.Rational.PositiveInfinity, 
                    false);  
            }
            //Solving
            hls.AddGoal(hls.CreateNaryFunction(TargetFunction, contractNumID));//目标函数最小化
            var hlsr = hls.Solve(new HybridLocalSearchParameters());
            //Set results
            for (int i = 0; i < results.Length; i++)
            {
                results[i] = hlsr.GetValue(contractNumID[i]);
            }
            return results;
       }
    }


        public class OptionFunctions
        {
            //Function OptionPrice
            [ExcelFunction(Description = "Exact solution for European option", Category = "Option Functions")]
            public static double OptionPrice([ExcelArgument(Description = @"Call (""C"") or a put (""P"")")]string optionType,
                [ExcelArgument(Description = @"Stock")]double underlying, [ExcelArgument(Description = @"Risk-free rate")]double interestRate,
                 [ExcelArgument(Description = @"Volatility")]double volatility, [ExcelArgument(Description = @"Strike price")]double strikePrice,
                  [ExcelArgument(Description = @"Time to maturity(in years)")]double timeToMaturity, [ExcelArgument(Description = @"Cost of carry")]double costOfCarry)
            {
                // Basic validation -
                if (underlying <= 0.0 || volatility <= 0.0 || timeToMaturity <= 0.0 || strikePrice <= 0.0)
                {
                    // Exception will be returned to Excel as #VALUE.
                    throw new ArgumentException();
                }
                Option o = new Option();
                o.otyp = optionType;
                o.r = interestRate;
                o.sigma = volatility;
                o.K = strikePrice;
                o.T = timeToMaturity;
                o.b = costOfCarry;
                return o.Price(underlying);
            }


            //Function OptionPriceGreeks
            [ExcelFunction(Description = "Compute exact solution for a European option, and returns price and greeks as a two-column, "
                + "six-row array with names and values", Category = "Option Functions")]
            public static object[,] OptionPriceGreeks([ExcelArgument(Description = @"Call (""C"") or a put (""P"")")]string optionType,
                [ExcelArgument(Description = @"Value of the underlying stock")]double underlying, [ExcelArgument(Description = @"Risk-free rate")]double interestRate,
                 [ExcelArgument(Description = @"Volatility")]double volatility, [ExcelArgument(Description = @"Strike price")]double strikePrice,
                  [ExcelArgument(Description = @"Time to maturity(years)")]double timeToMaturity, [ExcelArgument(Description = @"Cost of carry")]double costOfCarry)
            {
                // Basic validation
                if (underlying <= 0.0 || volatility <= 0.0 || timeToMaturity <= 0.0 || strikePrice <= 0.0)
                {
                    // Exception will be returned to Excel as #VALUE.
                    throw new ArgumentException();
                }
                Option o = new Option();
                o.otyp = optionType;
                o.r = interestRate;
                o.sigma = volatility;
                o.K = strikePrice;
                o.T = timeToMaturity;
                o.b = costOfCarry;
                return new object[7, 2]{
            {"Price", o.Price(underlying)},
            {"Delta", o.Delta(underlying)},
            {"Gamma", o.Gamma(underlying)},
            {"Vega", o.Vega(underlying)},
            {"Theta", o.Theta(underlying)},
            {"Rho", o.Rho(underlying)},
            {"Coc", o.Coc(underlying)}
            };
            }


            //Function Payoff
            [ExcelFunction(Description = "Payoff for European option", Category = "Option Functions")]
            public static object[,] Payoff(
                [ExcelArgument(Description = @"Call (""C"") or a put (""P"")")]object[] optionType,
                [ExcelArgument(Description = @"Strike price")]object[] strikes)
            {
                int len=optionType.Length;
                //Option and Stock Price at T array
<span style="white-space:pre">		</span>        Option[] options;
                double[] st; 
                double[] payoffs;
  
                options= new Option[len];
                st = new double[len + 2];
                payoffs=new double[len+2];


                //Initiate the first element st=0.0
                st[0] = 0.0;
                st[len + 1] = (double)strikes[len-1]+10.0;    //The last ST is last strike +10.0
                for (int i = 0; i < len; i++)
<span style="white-space:pre">			</span>    {
<span style="white-space:pre">			</span>        options[i]=new Option();
                    options[i].otyp=(string)optionType[i];
                    options[i].K=(double)strikes[i];
                    st[i + 1] = (double)strikes[i]; //Set st as strike price
                }
                //Payoffs at different strockPrice
                payoffs = COptionPayoff.OptionPayoff(st, options);
                //Return result: St and corresponding Payoff    
                object[,] result;
                result = new object[len+2,2];
                for (int i = 0; i < len+2; i++)
<span style="white-space:pre">			</span>    {
<span style="white-space:pre">			</span>        result[i,0]=(double)st[i];
                    result[i,1]=(double)payoffs[i];
<span style="white-space:pre">			</span>    }
                return result;
            }


            //Return corresponding option contract number by minimizing square of sum of the payoff difference 
            //ST:       0,  100,    110,    120,    140,    150
            //Payoff:  0,   10,     20,     20,     10,     10   
            [ExcelFunction(Description = "Return corresponding option contract number by minimizing square of sum of the payoff difference ", Category = "Option Functions")]
            public static object[,] OpTypeStrikeContractNum(
                [ExcelArgument(Description = @"Stock price at maturity")]object[] StockPrices,
                [ExcelArgument(Description = @"Target payoffs")]object[] TargetPayoffs)
            {
                int obsNum = StockPrices.Length;    //input number of stock price and target payoffs
                int optionNumNeeded = 2*(obsNum - 2);   //option number needed
                int numAfterInterpolation = obsNum * 2 - 2;
                double[] ContractNum;     //1st col: Type; 2nd col: Strike; 3rd col: ContractNum
                double[] interpolatedStockPrice;    
                double[] interpolatedTargetPayoffs;
                Option[] options;
                
                //Initiate the needed options
                options = new Option[optionNumNeeded];
                ContractNum = new double[optionNumNeeded];
                interpolatedStockPrice = new double[numAfterInterpolation]; //10
                interpolatedTargetPayoffs = new double[numAfterInterpolation];  //10
                
                //Set options strike prices
                for (int i = 0; i < obsNum-2; i++) //0,1,2,3
                {
                    //Set the Option Instances
                    options[i] = new Option();
                    options[i].otyp = "C";
                    options[i].K = (double)StockPrices[i + 1];
                    options[i + optionNumNeeded / 2] = new Option();
                    options[i + optionNumNeeded / 2].otyp = "P";
                    options[i + optionNumNeeded / 2].K = (double)StockPrices[i + 1];
                    //Set certain interpolated stock prices
                    interpolatedStockPrice[i*2]=(double)StockPrices[i]; //0,2,4,6
                    interpolatedTargetPayoffs[i*2]=(double)TargetPayoffs[i];
                }
                //Set the last two elements in the interpolation
                interpolatedStockPrice[numAfterInterpolation - 2] = (double)StockPrices[obsNum - 2];
                interpolatedStockPrice[numAfterInterpolation - 1] = (double)StockPrices[obsNum - 1];
                interpolatedTargetPayoffs[numAfterInterpolation - 2] = (double)TargetPayoffs[obsNum - 2];
                interpolatedTargetPayoffs[numAfterInterpolation - 1] = (double)TargetPayoffs[obsNum - 1];
                //Interpolation
                for (int i = 1; i < optionNumNeeded; i += 2)
                {
                    interpolatedStockPrice[i] = 0.5 * (interpolatedStockPrice[i - 1] + interpolatedStockPrice[i + 1]);
                    interpolatedTargetPayoffs[i] = 0.5 * (interpolatedTargetPayoffs[i - 1] + interpolatedTargetPayoffs[i + 1]);
                }


                //Solver
                CSolver solver = new CSolver(options, interpolatedTargetPayoffs, interpolatedStockPrice);
                ContractNum = solver.IndidualSolve();


                //result => 1st column is option type; 2nd column is strike; 3rd column is contract number
                object[,] result = new object[optionNumNeeded,3];
                for (int i = 0; i < optionNumNeeded; i++)
                {
                    result[i, 0] = (string)options[i].otyp;
                    result[i, 1] = (double)options[i].K;
                    result[i,2] =(double) ContractNum[i];
                }
                return result;
            }

        }
    }


之前一直困惑我的问题是,当用许多option(不同的K)去求解时,会出现很多小数contract number的问题,最后终于想到了一个办法,那就是把它作为目标函数的一部分写进去!结果成功!!!好爽!!!

例如,一个Strangle+Put:

技术分享

【C#】 25. 根据Option组成的投资组合的payoff,识别组成成分

标签:solver   financial markets   金融   c#   

原文地址:http://blog.csdn.net/huiwuhuiwu/article/details/45415305

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!