码迷,mamicode.com
首页 > 编程语言 > 详细

java.lang.Object.hashCode()的返回值到底是不是对象内存地址?

时间:2015-05-02 13:52:36      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:java   jvm   hashcode   

刚学Java的时候我也有过这种怀疑,但一直没有验证;最近在OSCHINA上看到有人在回答问题时也这么说,于是萌生了一探究竟的想法——java.lang.Object.hashCode()的返回值到底是不是对象内存地址?
(顺带回顾一下JNI)

hashCode契约

说到这个问题,大家的第一反应一定和我一样——去查Object.hashCode的源码,但翻开源码,看到的却是这样的(Oracle JDK 8):

    /**
     * Returns a hash code value for the object. This method is
     * supported for the benefit of hash tables such as those provided by
     * {@link java.util.HashMap}.
     * <p>
     * The general contract of {@code hashCode} is:
     * <ul>
     * <li>Whenever it is invoked on the same object more than once during
     *     an execution of a Java application, the {@code hashCode} method
     *     must consistently return the same integer, provided no information
     *     used in {@code equals} comparisons on the object is modified.
     *     This integer need not remain consistent from one execution of an
     *     application to another execution of the same application.
     * <li>If two objects are equal according to the {@code equals(Object)}
     *     method, then calling the {@code hashCode} method on each of
     *     the two objects must produce the same integer result.
     * <li>It is <em>not</em> required that if two objects are unequal
     *     according to the {@link java.lang.Object#equals(java.lang.Object)}
     *     method, then calling the {@code hashCode} method on each of the
     *     two objects must produce distinct integer results.  However, the
     *     programmer should be aware that producing distinct integer results
     *     for unequal objects may improve the performance of hash tables.
     * </ul>
     * <p>
     * As much as is reasonably practical, the hashCode method defined by
     * class {@code Object} does return distinct integers for distinct
     * objects. (This is typically implemented by converting the internal
     * address of the object into an integer, but this implementation
     * technique is not required by the
     * Java&trade; programming language.)
     *
     * @return  a hash code value for this object.
     * @see     java.lang.Object#equals(java.lang.Object)
     * @see     java.lang.System#identityHashCode
     */
    public native int hashCode();

Object.hashCode是一个native方法,看不到源码(Java代码,Oracle的JDK是看不到的,OpenJDK或其他开源JRE是可以找到对应的C/C++代码)。

上面这段注释指出了Object.hashCode()在JRE(Java Runtime Library)中应该遵循的一些契约(contract):
(PS:所谓契约当然是大家一致达成的,各个JVM厂商都会遵循)

  • 一致性(consistent),在程序的一次执行过程中,对同一个对象必须一致地返回同一个整数。

  • 如果两个对象通过equals(Object)比较,结果相等,那么对这两个对象分别调用hashCode方法应该产生相同的整数结果。(PS:这里equalshashCode说的都是Object类的)

  • 如果两个对象通过java.lang.Object.equals(java.lang.Ojbect)比较,结果不相等,不必保证对这两个对象分别调用hashCode也返回两个不相同的整数。

实际上java.lang包里面的类,都是JRE必须的,属于运行时库(Runtime Library),这也是为什么很多JRE下该类的class文件被打包到rt.jar中的原因(应该是Runtime的简写)。

而这些运行时库一般都是跟JDK/JRE一起发布的;所以,对于不同的JRE环境,问题的答案未必相同。

考虑到具体JVM厂商实现的Object.hashCode相对较复杂,下面先通过另一思路对开头提出的问题进行探究。

最后我们再找一些开源JRE的Object.hashCode的具体实现作简要分析。

Java中如何获得对象内存地址?

看不到Object.hashCode的源码,反过来,我们可以得到对象的内存地址和Object.hashCode比较,也能得出结论。

要验证这个问题自然需要一种得到对象内存地址的方法,但Java本身并没有提供类似的方法;这也是我在初学Java时没有验证这个问题的原因。

“内存地址”在Java里得不到,但在C/C++中却很容易得到。于是,我们想到——通过JNI让Java代码调用一段C/C++代码来得到对象内存地址。

这里可能需要考虑的还有一点——用Java什么类型能放得下C/C++的指针?
在64位机器上,C/C++的指针是8字节;32位是4字节。
嗯(⊙_⊙)~ 不管怎样Java的long都是8字节,足矣~

Think in Java——接口和测试

假设我们已经有了一个NativeUtils.java

class NativeUtils {
    public native static long getNativePointer(Object o);
}

并且已经实现了getNativePointer方法。

那么验证开头提出的问题就变得异常简单了:

class TestNativeUtils {
    public static void main(String args[]) {
        Object o = new Object();

        long nptr = NativeUtils.getNativePointer(o);
        long hash = o.hashCode();

        System.out.println(String.format("hash: %x, nptr: %x", hash, nptr));
    }
}

Think in C++——实现native方法

好了说干就干,现在就差那个native的getNativePointer了。

javah生成对应的.h文件:
$ javah NativeUtils
该命令执行后生成了NativeUtils.h

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeUtils */

#ifndef _Included_NativeUtils
#define _Included_NativeUtils
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class:     NativeUtils
 * Method:    getNativePointer
 * Signature: (Ljava/lang/Object;)J
 */
JNIEXPORT jlong JNICALL Java_NativeUtils_getNativePointer
  (JNIEnv *, jclass, jobject);

#ifdef __cplusplus
}
#endif
#endif

接着实现这个Java_NativeUtils_getNativePointer,文件命名为NativeUtils.cc

#include "NativeUtils.h"

JNIEXPORT jlong JNICALL
Java_NativeUtils_getNativePointer(JNIEnv *env, jclass clazz, jobject o)
{
    return reinterpret_cast<jlong>(o);  
}

编译为动态库:
$ g++ -shared -o libnative-utils.so NativeUtils.cc

可能因为找不到jni.h,报错:
NativeUtils.h:2:17: fatal error: jni.h: No such file or directory

在JDK安装目录下查找jni.h:
user@host:/usr/lib/jvm/java-7-openjdk-amd64$ find . -name jni.h
./include/jni.h

知道jni.h路径后,用-I选项加到编译命令上再次编译:
$ g++ -shared -I/usr/lib/jvm/java-7-openjdk-amd64/include/ -o libnative-utils.so NativeUtils.cc
OK, 编译成功,生成了 libnative-utils.so 文件。

Run in shell——在shell环境运行

下面就让TestNativeUtils在shell环境执行起来。
首先,编译NativeUtilsTestNativeUtils:
$ javac NativeUtils.java
$ javac TestNativeUtils.java
分别生成了NativeUtils.classTestNativeUtils.class

好了,就差临门一脚了——执行class文件:
$ java TestNativeUtils
居然出错了:

Exception in thread "main" java.lang.UnsatisfiedLinkError: NativeUtils.getNativePointer(Ljava/lang/Object;)J
    at NativeUtils.getNativePointer(Native Method)
    at TestNativeUtils.main(TestNativeUtils.java:5)

加载动态库到我们的程序中

到目前为止,我们的Java代码并没有实现NativeUtils.getNativePointer;所以,会有上面的错误。
必须在调用NativeUtils.getNativePointer前,将我们编译好的动态库加载上。可以用static代码块,以保证在调用前完成加载;修改后的NativeUtils

class NativeUtils {
    static {
        System.loadLibrary("native-utils");
    }

    public native static long getNativePointer(Object o);
}

让JVM能找到动态库

再次编译、执行:
$ javac NativeUtils.java
$ java TestNativeUtils
又有错误,但已经和刚才不一样了:

Exception in thread "main" java.lang.UnsatisfiedLinkError: no native-utils in java.library.path
    at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1886)
    at java.lang.Runtime.loadLibrary0(Runtime.java:849)
    at java.lang.System.loadLibrary(System.java:1088)
    at NativeUtils.<clinit>(NativeUtils.java:3)
    at TestNativeUtils.main(TestNativeUtils.java:5)

这次错误是:没有在java.library.path中找到native-utils,可以在javac命令-D参数上将当期目录加到java.library.path上,让其能够找到native-utils
$ java -Djava.library.path=. TestNativeUtils
hash: 4f5f1ace, nptr: 7f223a5fb958

All in one —— Makefile

上面的多个命令可以写到一个Makefile里,可以实现“一键执行”:

test: runtest

all: libnative-utils.so

JNI_INCLUDE=/usr/lib/jvm/java-7-openjdk-amd64/include

NativeUtils.class: NativeUtils.java
    javac NativeUtils.java

TestNativeUtils.class: TestNativeUtils.java
    javac TestNativeUtils.java

NativeUtils.h: NativeUtils.java
    javah -jni NativeUtils 

libnative-utils.so: NativeUtils.cc NativeUtils.h
    g++ -shared -I${JNI_INCLUDE} -o libnative-utils.so NativeUtils.cc

runtest: TestNativeUtils.class libnative-utils.so
    @echo "run test:"
    java -Djava.library.path=. TestNativeUtils

clean:
    rm -v *.class *.so *.h

几个JRE的具体实现

说道开源的Java运行环境,首先能想到的自然是OpenJDK和Android,下面分别简要分析。

hashCode on Android

Android的Object.hashCode和Oracle JDK的略有不同:

    private transient int shadow$_monitor_;

    public int hashCode() {
        int lockWord = shadow$_monitor_;
        final int lockWordMask = 0xC0000000;  // Top 2 bits.
        final int lockWordStateHash = 0x80000000;  // Top 2 bits are value 2 (kStateHash).
        if ((lockWord & lockWordMask) == lockWordStateHash) {
            return lockWord & ~lockWordMask; // 
        }
        return System.identityHashCode(this);
    }

(PS:估计shadow$_monitor_应该是hash值的一个cache,第一次需要计算一下,以后都不用计算了)
第一次执行时,shadow$_monitor_的值为0,将会调用System.identityHashCode

    public static native int identityHashCode(Object anObject);

而它是一个native的方法,对应代码(java_lang_System.cc):

static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) {
  if (UNLIKELY(javaObject == nullptr)) {
    return 0;
  }
  ScopedFastNativeObjectAccess soa(env);
  mirror::Object* o = soa.Decode<mirror::Object*>(javaObject);
  return static_cast<jint>(o->IdentityHashCode());
}

很显然,这里的关键在于mirror::Object::IdentityHashCode

int32_t Object::IdentityHashCode() const {
  mirror::Object* current_this = const_cast<mirror::Object*>(this);
  while (true) {
    LockWord lw = current_this->GetLockWord(false);
    switch (lw.GetState()) {
      case LockWord::kUnlocked: { // kUnlocked 是 LockWord的默认State值
        // Try to compare and swap in a new hash, if we succeed we will return the hash on the next
        // loop iteration.
        LockWord hash_word(LockWord::FromHashCode(GenerateIdentityHashCode()));
        DCHECK_EQ(hash_word.GetState(), LockWord::kHashCode); 
        if (const_cast<Object*>(this)->CasLockWordWeakRelaxed(lw, hash_word)) {
          return hash_word.GetHashCode();
        }
        break;
      }
      case LockWord::kThinLocked: {
        // Inflate the thin lock to a monitor and stick the hash code inside of the monitor. May
        // fail spuriously.
        Thread* self = Thread::Current();
        StackHandleScope<1> hs(self);
        Handle<mirror::Object> h_this(hs.NewHandle(current_this));
        Monitor::InflateThinLocked(self, h_this, lw, GenerateIdentityHashCode());
        // A GC may have occurred when we switched to kBlocked.
        current_this = h_this.Get();
        break;
      }
      case LockWord::kFatLocked: {
        // Already inflated, return the has stored in the monitor.
        Monitor* monitor = lw.FatLockMonitor();
        DCHECK(monitor != nullptr);
        return monitor->GetHashCode();
      }
      case LockWord::kHashCode: { // 以后调用
        return lw.GetHashCode();
      }
      default: {
        LOG(FATAL) << "Invalid state during hashcode " << lw.GetState();
        break;
      }
    }
  }
  LOG(FATAL) << "Unreachable";
  return 0;
}

这段代码可以看出——ART的Object.hashCode确实是有cache的,对于同一个Ojbect,第一次调用Object.hashCode将会执行实际的计算并记入cache,以后直接从cache中取出。
真正计算hashcode的是GenerateIdentityHashCode

int32_t Object::GenerateIdentityHashCode() {
  static AtomicInteger seed(987654321 + std::time(nullptr));
  int32_t expected_value, new_value;
  do {
    expected_value = static_cast<uint32_t>(seed.LoadRelaxed());
    new_value = expected_value * 1103515245 + 12345;
  } while ((expected_value & LockWord::kHashMask) == 0 ||
      !seed.CompareExchangeWeakRelaxed(expected_value, new_value));
  return expected_value & LockWord::kHashMask;
}

GenerateIdentityHashCode可以看出,ART的Object.hashCode的返回值和对象的地址并没有直接的关系。

hashCode on OpenJDK

OpenJDK项目首页:openjdk.java.net
TODO: OpenJDK上的hashCode具体实现和简要分析
Object.c

static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};

JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
    (*env)->RegisterNatives(env, cls,
                            methods, sizeof(methods)/sizeof(methods[0]));
}

JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
    if (this == NULL) {
        JNU_ThrowNullPointerException(env, NULL);
        return 0;
    } else {
        return (*env)->GetObjectClass(env, this);
    }
}

这段代码指出了Object.hashCode对应的C函数为JVM_IHashCode,下面需要找到JVM_IHashCode的代码jvm.cpp

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_IHashCode");
  // as implemented in the classic virtual machine; return 0 if object is NULL
  return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END

这里只是一个包装,实际计算hashCode的是ObjectSynchronizer::FastHashCode,位于synchronizer.cpp

intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  if (UseBiasedLocking) {
    // NOTE: many places throughout the JVM do not expect a safepoint
    // to be taken here, in particular most operations on perm gen
    // objects. However, we only ever bias Java instances and all of
    // the call sites of identity_hash that might revoke biases have
    // been checked to make sure they can handle a safepoint. The
    // added check of the bias pattern is to avoid useless calls to
    // thread-local storage.
    if (obj->mark()->has_bias_pattern()) {
      // Box and unbox the raw reference just in case we cause a STW safepoint.
      Handle hobj (Self, obj) ;
      // Relaxing assertion for bug 6320749.
      assert (Universe::verify_in_progress() ||
              !SafepointSynchronize::is_at_safepoint(),
             "biases should not be seen by VM thread here");
      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
      obj = hobj() ;
      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
    }
  }

  // hashCode() is a heap mutator ...
  // Relaxing assertion for bug 6320749.
  assert (Universe::verify_in_progress() ||
          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (Universe::verify_in_progress() ||
          Self->is_Java_thread() , "invariant") ;
  assert (Universe::verify_in_progress() ||
         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

  ObjectMonitor* monitor = NULL;
  markOop temp, test;
  intptr_t hash;
  markOop mark = ReadStableMark (obj);

  // object should remain ineligible for biased locking
  assert (!mark->has_bias_pattern(), "invariant") ;

  if (mark->is_neutral()) {
    hash = mark->hash();              // this is a normal header
    if (hash) {                       // if it has hash, just return it
      return hash;
    }
    hash = get_next_hash(Self, obj);  // allocate a new hash code
    temp = mark->copy_set_hash(hash); // merge the hash code into header
    // use (machine word version) atomic operation to install the hash
    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
    if (test == mark) {
      return hash;
    }
    // If atomic operation failed, we must inflate the header
    // into heavy weight monitor. We could add more code here
    // for fast path, but it does not worth the complexity.
  } else if (mark->has_monitor()) {
    monitor = mark->monitor();
    temp = monitor->header();
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();
    if (hash) {
      return hash;
    }
    // Skip to the following code to reduce code size
  } else if (Self->is_lock_owned((address)mark->locker())) {
    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();              // by current thread, check if the displaced
    if (hash) {                       // header contains hash code
      return hash;
    }
    // WARNING:
    //   The displaced header is strictly immutable.
    // It can NOT be changed in ANY cases. So we have
    // to inflate the header into heavyweight monitor
    // even the current thread owns the lock. The reason
    // is the BasicLock (stack slot) will be asynchronously
    // read by other threads during the inflate() function.
    // Any change to stack may not propagate to other threads
    // correctly.
  }

  // Inflate the monitor to set hash code
  monitor = ObjectSynchronizer::inflate(Self, obj);
  // Load displaced header and check it has hash code
  mark = monitor->header();
  assert (mark->is_neutral(), "invariant") ;
  hash = mark->hash(); // 取出缓存
  if (hash == 0) {
    hash = get_next_hash(Self, obj); // 实际计算
    temp = mark->copy_set_hash(hash); // merge hash code into header
    assert (temp->is_neutral(), "invariant") ;
    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
    if (test != mark) {
      // The only update to the header in the monitor (outside GC)
      // is install the hash code. If someone add new usage of
      // displaced header, please update this code
      hash = test->hash();
      assert (test->is_neutral(), "invariant") ;
      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
    }
  }
  // We finally get the hash
  return hash;
}

又是假牙,实际计算hashCode的是get_next_hash,代码和ObjectSynchronizer::FastHashCode相邻:

// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
//   2654435761 = 2^32 * Phi (golden ratio)
//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia‘s shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
//   in undesirable regularity in the hashCode values of adjacent objects
//   (objects allocated back-to-back, in particular).  This could potentially
//   result in hashtable collisions and reduced hashtable efficiency.
//   There are simple ways to "diffuse" the middle address bits over the
//   generated hashCode values:
//

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  if (hashCode == 0) {
     // This form uses an unguarded global Park-Miller RNG,
     // so it‘s possible for two threads to race and generate the same RNG.
     // On MP system we‘ll have lots of RW access to a global, so the
     // mechanism induces lots of coherency traffic.
     value = os::random() ; // 随机数
  } else
  if (hashCode == 1) {
     // This variation has the property of being stable (idempotent)
     // between STW operations.  This can be useful in some of the 1-0
     // synchronization schemes.
     // 地址基础上hack
     intptr_t addrBits = intptr_t(obj) >> 3 ; 
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else
  if (hashCode == 2) {
     value = 1 ;            // for sensitivity testing, 实际不会使用
  } else
  if (hashCode == 3) {
     value = ++GVars.hcSequence ;
  } else
  if (hashCode == 4) {
     value = intptr_t(obj) ; // 直接用地址
  } else {
     // Marsaglia‘s xor-shift scheme with thread-specific state
     // This is probably the best overall implementation -- we‘ll
     // likely make this the default in future releases.
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }

  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}

这段代码可以看出OpenJDK一共实现了5中不同的计算hash值的方法,通过
这段代码中hashCode进行切换。其中hashCode == 4的是直接使用地址的(前面的实验说明OpenJDK默认情况下并没有使用这种方式,或许可以通过运行/编译时参数进行选择)。

结论

前面通过JNI验证已经能够得到很显然的结论,hashCode返回的并不一定是对象的(虚拟)内存地址,具体取决于运行时库和JVM的具体实现。

我的运行环境:
OS:
Ubuntu 12.04 64bit Desktop |

JDK:
java version “1.7.0_55”
OpenJDK Runtime Environment (IcedTea 2.4.7) (7u55-2.4.7-1ubuntu1~0.12.04.2) \
OpenJDK 64-Bit Server VM (build 24.51-b03, mixed mode)

java.lang.Object.hashCode()的返回值到底是不是对象内存地址?

标签:java   jvm   hashcode   

原文地址:http://blog.csdn.net/xusiwei1236/article/details/45152201

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!