码迷,mamicode.com
首页 > Windows程序 > 详细

Win7下面安装hadoop2.x插件及Win7/Linux运行MapReduce程序

时间:2015-05-03 20:40:27      阅读:353      评论:0      收藏:0      [点我收藏+]

标签:hadoop

一、win7下
(一)、安装环境及安装包
win7 32 bit
jdk7
eclipse-java-juno-SR2-win32.zip
hadoop-2.2.0.tar.gz
hadoop-eclipse-plugin-2.2.0.jar
hadoop-common-2.2.0-bin.rar

(二)、安装
默认已经安装好了jdk、eclipse以及配置好了hadoop伪分布模式

1、拷贝hadoop-eclipse-plugin-2.2.0.jar插件到Eclipse安装目录的子目录plugins下,重启Eclipse。

2、设置环境变量
技术分享

技术分享

3、配置eclipse中hadoop的安装目录
解压hadoop-2.2.0.tar.gz

技术分享

4、解压hadoop-common-2.2.0-bin.rar
复制里面的文件到hadoop安装目录的bin文件夹下

技术分享

(三)、在win7下,MapReuce On Yarn执行

新建一个工程
技术分享

点击window–>show view–>Map/Reduce Locations

点击New Hadoop Location……
技术分享

添加如下配置,点击完成。
技术分享

自此,你就可以查看HDFS中的相关内容了。
技术分享

编写mapreduce程序
技术分享

在src目录下添加文件log4j.properties,内容如下:

log4j.rootLogger=debug,appender1

log4j.appender.appender1=org.apache.log4j.ConsoleAppender

log4j.appender.appender1.layout=org.apache.log4j.TTCCLayout

运行,结果如下:
技术分享

二、在Linux下

(一)在Linux下,MapReuce On Yarn上

运行

[root@liguodong Documents]# yarn jar  test.jar hdfs://liguodong:8020/hello  hdfs://liguodong:8020/output
15/05/03 03:16:12 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
………………
15/05/03 03:16:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1430648117067_0001
15/05/03 03:16:13 INFO impl.YarnClientImpl: Submitted application application_1430648117067_0001 to ResourceManager at /0.0.0.0:8032
15/05/03 03:16:13 INFO mapreduce.Job: The url to track the job: http://liguodong:8088/proxy/application_1430648117067_0001/
15/05/03 03:16:13 INFO mapreduce.Job: Running job: job_1430648117067_0001
15/05/03 03:16:21 INFO mapreduce.Job: Job job_1430648117067_0001 running in uber mode : false
15/05/03 03:16:21 INFO mapreduce.Job:  map 0% reduce 0%
15/05/03 03:16:40 INFO mapreduce.Job:  map 100% reduce 0%
15/05/03 03:16:45 INFO mapreduce.Job:  map 100% reduce 100%
15/05/03 03:16:45 INFO mapreduce.Job: Job job_1430648117067_0001 completed successfully
15/05/03 03:16:45 INFO mapreduce.Job: Counters: 43
        File System Counters
                FILE: Number of bytes read=98
                FILE: Number of bytes written=157289
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=124
                HDFS: Number of bytes written=28
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=16924
                Total time spent by all reduces in occupied slots (ms)=3683
        Map-Reduce Framework
                Map input records=3
                Map output records=6
                Map output bytes=80
                Map output materialized bytes=98
                Input split bytes=92
                Combine input records=0
                Combine output records=0
                Reduce input groups=4
                Reduce shuffle bytes=98
                Reduce input records=6
                Reduce output records=4
                Spilled Records=12
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=112
                CPU time spent (ms)=12010
                Physical memory (bytes) snapshot=211070976
                Virtual memory (bytes) snapshot=777789440
                Total committed heap usage (bytes)=130879488
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=32
        File Output Format Counters
                Bytes Written=28

查看结果

[root@liguodong Documents]# hdfs dfs -ls  /
Found 3 items
-rw-r--r--   2 root supergroup         32 2015-05-03 03:15 /hello
drwxr-xr-x   - root supergroup          0 2015-05-03 03:16 /output
drwx------   - root supergroup          0 2015-05-03 03:16 /tmp
[root@liguodong Documents]# hdfs dfs -ls  /output
Found 2 items
-rw-r--r--   2 root supergroup          0 2015-05-03 03:16 /output/_SUCCESS
-rw-r--r--   2 root supergroup         28 2015-05-03 03:16 /output/part-r-00000
[root@liguodong Documents]# hdfs dfs -text  /output/pa*
hadoop  1
hello   3
me      1
you     1

遇到的问题

File /output/………  could only be replicated to 0 nodes instead of minReplication (=1).  
There are 1 datanode(s) running and no node(s) are excluded in this operation.

在网上找了很多方法是试了没有解决,然后自己根据这句话的中文意思是只有被复制到0个副本,而不是最少的一个副本。

我将最先dfs.replication.min设置为0,但是很遗憾,后面运行之后发现必须大于0,我又改为了1。
然后再dfs.datanode.data.dir多设置了几个路径,就当是在一个系统中多次备份吧,后面发现成功了。

设置如下,在hdfs-site.xml中添加如下配置。

    <property>
        <name>dfs.datanode.data.dir</name>  
        <value>     file://${hadoop.tmp.dir}/dfs/dn,file://${hadoop.tmp.dir}/dfs/dn1,file://${hadoop.tmp.dir}/dfs/dn2          
        </value>
    </property>

(二)在Linux下,MapReuce On Local上
在mapred-site.xml中,添加如下配置文件。

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>local</value>
    </property>
</configuration>

可以不用启动ResourceManager和NodeManager。

运行

[root@liguodong Documents]# hadoop jar  test.jar hdfs://liguodong:8020/hello  hdfs://liguodong:8020/output

三、MapReduce运行模式有多种
mapred-site.xml中
1)本地运行模式(默认)

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>local</value>
    </property>
</configuration>

2)运行在YARN上

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

四、Uber Mode
Uber Mode是针对于在Hadoop2.x中,对于MapReuduce Job小作业来说的一种优化方式(重用JVM的方式)。
小作业指的是MapReduce Job 运行处理的数据量,当数据量(大小)小于 HDFS 存储数据时block的大小(128M)。
默认是没有启动的。
mapred-site.xml中

<name>mapreduce.job.ubertask.enable</name>
<value>true</value>

Win7下面安装hadoop2.x插件及Win7/Linux运行MapReduce程序

标签:hadoop

原文地址:http://blog.csdn.net/scgaliguodong123_/article/details/45443021

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!