标签:
这个题目leetcode上提示用动态规划,但是那样要O(n^2)。我自己想出了一个O(n)的算法,并提交通过。
【题目】
Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring. For "(()", the longest valid parentheses substring is "()", which has length = 2. Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4. Tags: Dynamic Programming ,String
注意到一个规律:只要从开头当前位置的子串中左括号的个数小于右括号的个数,那么该子串便不能够再同右边任何子串构成合法子串。
这时,只要记录当前子串的最长合法子串,然后从下一个位置开始查找最长子串。
局部最长合法子串长度的记录:这里用到了一个Hashtable<Integer,Integer>,key为记录该长度时栈中左括号的个数,value为每次遇
到右括号时该右括号所在合法子串的长度。
【上码】
import java.util.Hashtable; import java.util.Stack; /* * 参考:为参考他人算法 * T = O(n) * leetcode上提示用动态规划,但是那样要O(n^2) */ public class Solution { public int longestValidParentheses(String s) { int maxLen = 0; if(s==null||s.length()==0)return maxLen; Stack<Character> stack = new Stack<Character>(); Hashtable<Integer, Integer> hashtable = new Hashtable<Integer, Integer>(); int len = s.length(); int left=0,right=0,L=0; for(int p=0;p<len;p++) { if(s.charAt(p) == ')') if(stack.isEmpty()) { //maxLen = maxLen>L?maxLen:L; right++; } else if(stack.peek()=='('){ stack.pop(); Integer v1 = hashtable.get(left); if(v1 != null) { L += v1; hashtable.remove(left); } left--; L+=2; Integer v2 = hashtable.get(left); if(v2 != null){ L += v2; } hashtable.put(left, L); } else { stack.push(')'); right++; } else { stack.push('('); left++; } maxLen = maxLen>L?maxLen:L; L = 0; if(left<right) { stack.clear(); hashtable.clear(); left = 0; right = 0; //L = 0; } } return maxLen; } }
【leetcode with java】32 Longest Valid Parentheses O(n)
标签:
原文地址:http://blog.csdn.net/pbooodq/article/details/45532449