码迷,mamicode.com
首页 > Web开发 > 详细

Spark Streaming中向flume拉取数据

时间:2015-05-13 16:04:15      阅读:266      评论:0      收藏:0      [点我收藏+]

标签:

在这里看到的解决方法

https://issues.apache.org/jira/browse/SPARK-1729

请是个人理解,有问题请大家留言。

 

其实本身flume是不支持像KAFKA一样的发布/订阅功能的,也就是说无法让spark去flume拉取数据,所以老外就想了个取巧的办法。

在flume中其实sinks是向channel主动拿数据的,那么就让就自定义sinks进行自监听,然后使sparkstreaming先和sinks连接在一起, 让streaming来决定是否拿数据及拿数据的频率, 那么这不就是实现了由streaming来向flume拿数据的需求了嘛?

你看,真是聪明人的作法,但我觉得吧,如果真的有发布/订阅的需求,其实还是上KAFKA吧…

 

最后,现在来说一下应该怎么去使用

首先,需要将以下代码编译成jar包,然后在flume中使用,代码转自这里 (如果发现需要依赖的工具类神马的,请在相同目录下的scala文件中找一找)

package org.apache.spark.streaming.flume.sink

import java.net.InetSocketAddress
import java.util.concurrent._

import org.apache.avro.ipc.NettyServer
import org.apache.avro.ipc.specific.SpecificResponder
import org.apache.flume.Context
import org.apache.flume.Sink.Status
import org.apache.flume.conf.{Configurable, ConfigurationException}
import org.apache.flume.sink.AbstractSink

/**
 * A sink that uses Avro RPC to run a server that can be polled by Spark‘s
 * FlumePollingInputDStream. This sink has the following configuration parameters:
 *
 * hostname - The hostname to bind to. Default: 0.0.0.0
 * port - The port to bind to. (No default - mandatory)
 * timeout - Time in seconds after which a transaction is rolled back,
 * if an ACK is not received from Spark within that time
 * threads - Number of threads to use to receive requests from Spark (Default: 10)
 *
 * This sink is unlike other Flume sinks in the sense that it does not push data,
 * instead the process method in this sink simply blocks the SinkRunner the first time it is
 * called. This sink starts up an Avro IPC server that uses the SparkFlumeProtocol.
 *
 * Each time a getEventBatch call comes, creates a transaction and reads events
 * from the channel. When enough events are read, the events are sent to the Spark receiver and
 * the thread itself is blocked and a reference to it saved off.
 *
 * When the ack for that batch is received,
 * the thread which created the transaction is is retrieved and it commits the transaction with the
 * channel from the same thread it was originally created in (since Flume transactions are
 * thread local). If a nack is received instead, the sink rolls back the transaction. If no ack
 * is received within the specified timeout, the transaction is rolled back too. If an ack comes
 * after that, it is simply ignored and the events get re-sent.
 *
 */

class SparkSink extends AbstractSink with Logging with Configurable {

  // Size of the pool to use for holding transaction processors.
  private var poolSize: Integer = SparkSinkConfig.DEFAULT_THREADS

  // Timeout for each transaction. If spark does not respond in this much time,
  // rollback the transaction
  private var transactionTimeout = SparkSinkConfig.DEFAULT_TRANSACTION_TIMEOUT

  // Address info to bind on
  private var hostname: String = SparkSinkConfig.DEFAULT_HOSTNAME
  private var port: Int = 0

  private var backOffInterval: Int = 200

  // Handle to the server
  private var serverOpt: Option[NettyServer] = None

  // The handler that handles the callback from Avro
  private var handler: Option[SparkAvroCallbackHandler] = None

  // Latch that blocks off the Flume framework from wasting 1 thread.
  private val blockingLatch = new CountDownLatch(1)

  override def start() {
    logInfo("Starting Spark Sink: " + getName + " on port: " + port + " and interface: " +
      hostname + " with " + "pool size: " + poolSize + " and transaction timeout: " +
      transactionTimeout + ".")
    handler = Option(new SparkAvroCallbackHandler(poolSize, getChannel, transactionTimeout,
      backOffInterval))
    val responder = new SpecificResponder(classOf[SparkFlumeProtocol], handler.get)
    // Using the constructor that takes specific thread-pools requires bringing in netty
    // dependencies which are being excluded in the build. In practice,
    // Netty dependencies are already available on the JVM as Flume would have pulled them in.
    serverOpt = Option(new NettyServer(responder, new InetSocketAddress(hostname, port)))
    serverOpt.foreach(server => {
      logInfo("Starting Avro server for sink: " + getName)
      server.start()
    })
    super.start()
  }

  override def stop() {
    logInfo("Stopping Spark Sink: " + getName)
    handler.foreach(callbackHandler => {
      callbackHandler.shutdown()
    })
    serverOpt.foreach(server => {
      logInfo("Stopping Avro Server for sink: " + getName)
      server.close()
      server.join()
    })
    blockingLatch.countDown()
    super.stop()
  }

  override def configure(ctx: Context) {
    import SparkSinkConfig._
    hostname = ctx.getString(CONF_HOSTNAME, DEFAULT_HOSTNAME)
    port = Option(ctx.getInteger(CONF_PORT)).
      getOrElse(throw new ConfigurationException("The port to bind to must be specified"))
    poolSize = ctx.getInteger(THREADS, DEFAULT_THREADS)
    transactionTimeout = ctx.getInteger(CONF_TRANSACTION_TIMEOUT, DEFAULT_TRANSACTION_TIMEOUT)
    backOffInterval = ctx.getInteger(CONF_BACKOFF_INTERVAL, DEFAULT_BACKOFF_INTERVAL)
    logInfo("Configured Spark Sink with hostname: " + hostname + ", port: " + port + ", " +
      "poolSize: " + poolSize + ", transactionTimeout: " + transactionTimeout + ", " +
      "backoffInterval: " + backOffInterval)
  }

  override def process(): Status = {
    // This method is called in a loop by the Flume framework - block it until the sink is
    // stopped to save CPU resources. The sink runner will interrupt this thread when the sink is
    // being shut down.
    logInfo("Blocking Sink Runner, sink will continue to run..")
    blockingLatch.await()
    Status.BACKOFF
  }

  private[flume] def getPort(): Int = {
    serverOpt
      .map(_.getPort)
      .getOrElse(
        throw new RuntimeException("Server was not started!")
      )
  }

  /**
   * Pass in a [[CountDownLatch]] for testing purposes. This batch is counted down when each
   * batch is received. The test can simply call await on this latch till the expected number of
   * batches are received.
   * @param latch
   */
  private[flume] def countdownWhenBatchReceived(latch: CountDownLatch) {
    handler.foreach(_.countDownWhenBatchAcked(latch))
  }
}

/**
 * Configuration parameters and their defaults.
 */
private[flume]
object SparkSinkConfig {
  val THREADS = "threads"
  val DEFAULT_THREADS = 10

  val CONF_TRANSACTION_TIMEOUT = "timeout"
  val DEFAULT_TRANSACTION_TIMEOUT = 60

  val CONF_HOSTNAME = "hostname"
  val DEFAULT_HOSTNAME = "0.0.0.0"

  val CONF_PORT = "port"

  val CONF_BACKOFF_INTERVAL = "backoffInterval"
  val DEFAULT_BACKOFF_INTERVAL = 200
}

  

然后在你的streaming中使用如下的代码

package org.apache.spark.examples.streaming

import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam
import java.net.InetSocketAddress

/**
 *  Produces a count of events received from Flume.
 *
 *  This should be used in conjunction with the Spark Sink running in a Flume agent. See
 *  the Spark Streaming programming guide for more details.
 *
 *  Usage: FlumePollingEventCount <host> <port>
 *    `host` is the host on which the Spark Sink is running.
 *    `port` is the port at which the Spark Sink is listening.
 *
 *  To run this example:
 *    `$ bin/run-example org.apache.spark.examples.streaming.FlumePollingEventCount [host] [port] `
 */
object FlumePollingEventCount {
  def main(args: Array[String]) {
    if (args.length < 2) {
      System.err.println(
        "Usage: FlumePollingEventCount <host> <port>")
      System.exit(1)
    }

    StreamingExamples.setStreamingLogLevels()

    val Array(host, IntParam(port)) = args

    val batchInterval = Milliseconds(2000)

    // Create the context and set the batch size
    val sparkConf = new SparkConf().setAppName("FlumePollingEventCount")
    val ssc = new StreamingContext(sparkConf, batchInterval)

    // Create a flume stream that polls the Spark Sink running in a Flume agent
    val stream = FlumeUtils.createPollingStream(ssc, host, port)

    // Print out the count of events received from this server in each batch
    stream.count().map(cnt => "Received " + cnt + " flume events." ).print()

    ssc.start()
    ssc.awaitTermination()
  }
}

  

 

Spark Streaming中向flume拉取数据

标签:

原文地址:http://www.cnblogs.com/hark0623/p/4500439.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!