标签:
1- 问题提出
2- 逻辑回归
3- 理论推导
4- Python/Spark实现
1 # -*- coding: utf-8 -*- 2 from pyspark import SparkContext 3 from math import * 4 5 theta = [0, 0, 0] #初始theta值 6 alpha = 0.001 #学习速率 7 8 def inner(x, y): 9 return sum([i*j for i,j in zip(x,y)]) 10 11 def func(lst): 12 h = (1 + exp(-inner(lst, theta)))**(-1) 13 return map(lambda x: (h - lst[-1]) * x, lst[:-1]) 14 15 16 sc = SparkContext(‘local‘) 17 18 rdd = sc.textFile(‘/home/freyr/logisticRegression.txt‘)19 .map(lambda line: map(float, line.strip().split(‘,‘)))20 .map(lambda lst: [1]+lst) 21 22 23 for i in range(400): 24 partheta = rdd.map(func)25 .reduce(lambda x,y: [i+j for i,j in zip(x,y)]) 26 27 for j in range(3): 28 theta[j] = theta[j] - alpha * partheta[j] 29 30 print ‘theta = %s‘ % theta
逻辑回归的分布式实现 [Logistic Regression / Machine Learning / Spark ]
标签:
原文地址:http://www.cnblogs.com/freyr/p/4501039.html