标签:
遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。
作为遗传算法生物背景的介绍,下面内容了解即可:
种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ) :包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。
遗传算法有3个最基本的操作:选择,交叉,变异。
选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:
交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。
变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:
变异前:
000001110000000010000
变异后:
000001110000100010000
适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。
下面的方法可优化遗传算法的性能。
精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。
AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET中包含有一个遗传算法的类库。
标签:
原文地址:http://www.cnblogs.com/chxer/p/4504251.html