码迷,mamicode.com
首页 > 编程语言 > 详细

33. C# -- 线程和进程 (3)

时间:2015-05-22 19:24:40      阅读:152      评论:0      收藏:0      [点我收藏+]

标签:c#

在多线程的程序中,经常会出现两种情况:

一种情况:   应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应

这一般使用ThreadPool(线程池)来解决;

另一种情况:线程平时都处于休眠状态,只是周期性地被唤醒

这一般使用Timer(定时器)来解决;

ThreadPool类提供一个由系统维护的线程池(可以看作一个线程的容器),该容器需要 Windows 2000 以上系统支持,因为其中某些方法调用了只有高版本的Windows才有的API函数。

将线程安放在线程池里,需使用ThreadPool.QueueUserWorkItem()方法,该方法的原型如下:

//将一个线程放进线程池,该线程的Start()方法将调用WaitCallback代理对象代表的函数

public static bool QueueUserWorkItem(WaitCallback);

//重载的方法如下,参数object将传递给WaitCallback所代表的方法

public static bool QueueUserWorkItem(WaitCallback, object);

ThreadPool类是一个静态类,你不能也不必要生成它的对象。而且一旦使用该方法在线程池中添加了一个项目,那么该项目将是无法取消的。

在这里你无需自己建立线程,只需把你要做的工作写成函数,然后作为参数传递给ThreadPool.QueueUserWorkItem()方法就行了,传递的方法就是依靠WaitCallback代理对象,而线程的建立、管理、运行等工作都是由系统自动完成的,你无须考虑那些复杂的细节问题。

ThreadPool 的用法:

首先程序创建了一个ManualResetEvent对象,该对象就像一个信号灯,可以利用它的信号来通知其它线程。

本例中,当线程池中所有线程工作都完成以后,ManualResetEvent对象将被设置为有信号,从而通知主线程继续运行。

ManualResetEvent对象有几个重要的方法:

初始化该对象时,用户可以指定其默认的状态(有信号/无信号);

在初始化以后,该对象将保持原来的状态不变,直到它的Reset()或者Set()方法被调用:

Reset()方法:将其设置为无信号状态;

Set()方法:将其设置为有信号状态。

WaitOne()方法:使当前线程挂起,直到ManualResetEvent对象处于有信号状态,此时该线程将被激活。然后,程序将向线程池中添加工作项,这些以函数形式提供的工作项被系统用来初始化自动建立的线程。当所有的线程都运行完了以后,ManualResetEvent.Set()方法被调用,因为调用了ManualResetEvent.WaitOne()方法而处在等待状态的主线程将接收到这个信号,于是它接着往下执行,完成后边的工作。

ThreadPool 的用法示例:

using System;
using System.Collections;
using System.Threading;

namespace ThreadExample
{
    //这是用来保存信息的数据结构,将作为参数被传递
    public class SomeState
    {
      public int Cookie;
      public SomeState(int iCookie)
      {
        Cookie = iCookie;
      }
    }

    public class Alpha
    {
  public Hashtable HashCount;
  public ManualResetEvent eventX;
  public static int iCount = 0;
  public static int iMaxCount = 0;
  
        public Alpha(int MaxCount) 
  {
         HashCount = new Hashtable(MaxCount);
         iMaxCount = MaxCount;
  }

  //线程池里的线程将调用Beta()方法
  public void Beta(Object state)
  {
      //输出当前线程的hash编码值和Cookie的值
         Console.WriteLine(" {0} {1} :", Thread.CurrentThread.GetHashCode(),((SomeState)state).Cookie);
      Console.WriteLine("HashCount.Count=={0}, Thread.CurrentThread.GetHashCode()=={1}", HashCount.Count, Thread.CurrentThread.GetHashCode());
      lock (HashCount) 
      {
        //如果当前的Hash表中没有当前线程的Hash值,则添加之
        if (!HashCount.ContainsKey(Thread.CurrentThread.GetHashCode()))
             HashCount.Add (Thread.CurrentThread.GetHashCode(), 0);
         HashCount[Thread.CurrentThread.GetHashCode()] = 
            ((int)HashCount[Thread.CurrentThread.GetHashCode()])+1;
      }
          int iX = 2000;
          Thread.Sleep(iX);
          //Interlocked.Increment()操作是一个原子操作,具体请看下面说明
          Interlocked.Increment(ref iCount);

          if (iCount == iMaxCount)
          {
          Console.WriteLine();
        Console.WriteLine("Setting eventX ");
        eventX.Set();
        }
    }
  }

        public class SimplePool
        {
            public static int Main(string[] args)
            {
                Console.WriteLine("Thread Pool Sample:");
                bool W2K = false;
                int MaxCount = 10;//允许线程池中运行最多10个线程
                //新建ManualResetEvent对象并且初始化为无信号状态
                ManualResetEvent eventX = new ManualResetEvent(false);
                Console.WriteLine("Queuing {0} items to Thread Pool", MaxCount);
                Alpha oAlpha = new Alpha(MaxCount); 
                //创建工作项
                //注意初始化oAlpha对象的eventX属性
                oAlpha.eventX = eventX;
                Console.WriteLine("Queue to Thread Pool 0");
                try
                {
                    //将工作项装入线程池 
                    //这里要用到Windows 2000以上版本才有的API,所以可能出现NotSupportException异常
                    ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(0));
                    W2K = true;
                }
                catch (NotSupportedException)
                {
                    Console.WriteLine("These API‘s may fail when called on a non-Windows 2000 system.");
                    W2K = false;
                }
                if (W2K)//如果当前系统支持ThreadPool的方法.
                {
                    for (int iItem=1;iItem < MaxCount;iItem++)
                    {
                        //插入队列元素
                        Console.WriteLine("Queue to Thread Pool {0}", iItem);
                        ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(iItem));
                    }
                    Console.WriteLine("Waiting for Thread Pool to drain");
                    //等待事件的完成,即线程调用ManualResetEvent.Set()方法
                    eventX.WaitOne(Timeout.Infinite,true);
                    //WaitOne()方法使调用它的线程等待直到eventX.Set()方法被调用
                    Console.WriteLine("Thread Pool has been drained (Event fired)");
                    Console.WriteLine();
                    Console.WriteLine("Load across threads");
                    foreach(object o in oAlpha.HashCount.Keys)
                        Console.WriteLine("{0} {1}", o, oAlpha.HashCount[o]);
                }
                Console.ReadLine();
                return 0;
            }
        }
    }
}


程序中应该引起注意的地方:

SomeState类是一个保存信息的数据结构,它在程序中作为参数被传递给每一个线程,因为你需要把一些有用的信息封装起来提供给线程,而这种方式是非常有效的。

程序出现的InterLocked类也是专为多线程程序而存在的,它提供了一些有用的原子操作。

原子操作:就是在多线程程序中,如果这个线程调用这个操作修改一个变量,那么其他线程就不能修改这个变量了,这跟lock关键字在本质上是一样的。


结果:

Thread Pool Sample:
Queuing
10 items to Thread Pool
Queue to Thread Pool
0
Queue to Thread Pool
1
Queue to Thread Pool
2
Queue to Thread Pool
3
Queue to Thread Pool
4
Queue to Thread Pool
5
2 0 :
HashCount.Count
==0, Thread.CurrentThread.GetHashCode()==2
Queue to Thread Pool
6
Queue to Thread Pool
7
Queue to Thread Pool
8
Queue to Thread Pool
9
Waiting
for Thread Pool to drain
4 1 :
HashCount.Count
==1, Thread.CurrentThread.GetHashCode()==4
6 2 :
HashCount.Count
==1, Thread.CurrentThread.GetHashCode()==6
7 3 :
HashCount.Count
==1, Thread.CurrentThread.GetHashCode()==7
2 4 :
HashCount.Count
==1, Thread.CurrentThread.GetHashCode()==2
8 5 :
HashCount.Count
==2, Thread.CurrentThread.GetHashCode()==8
9 6 :
HashCount.Count
==2, Thread.CurrentThread.GetHashCode()==9
10 7 :
HashCount.Count
==2, Thread.CurrentThread.GetHashCode()==10
11 8 :
HashCount.Count
==2, Thread.CurrentThread.GetHashCode()==11
4 9 :
HashCount.Count
==2, Thread.CurrentThread.GetHashCode()==4

Setting eventX
Thread Pool has been drained (Event fired)

Load across threads
11 1
10 1
9 1
8 1
7 1
6 1
4 2
2 2


我们应该彻底地分析上面的程序,把握住线程池的本质,理解它存在的意义是什么,这样才能得心应手地使用它。

Timer类:设置一个定时器,定时执行用户指定的函数。

定时器启动后,系统将自动建立一个新的线程,执行用户指定的函数。

初始化一个Timer对象:

Timer timer = new Timer(timerDelegate, s,1000, 1000);

// 第一个参数:指定了TimerCallback 委托,表示要执行的方法;

// 第二个参数:一个包含回调方法要使用的信息的对象,或者为空引用;

// 第三个参数:延迟时间——计时开始的时刻距现在的时间,单位是毫秒,指定为“0”表示立即启动计时器;

// 第四个参数:定时器的时间间隔——计时开始以后,每隔这么长的一段时间,TimerCallback所代表的方法将被调用一次,单位也是毫秒。指定 Timeout.Infinite 可以禁用定期终止。

Timer.Change()方法:修改定时器的设置。(这是一个参数类型重载的方法)

使用示例:  timer.Change(1000,2000);

Timer类的程序示例(来源:MSDN):

using System;
using System.Threading;

namespace ThreadExample
{
    class TimerExampleState 
    {
      public int counter = 0;
      public Timer tmr;
    }

    class App 
    {
      public static void Main()
      {
          TimerExampleState s = new TimerExampleState();

          //创建代理对象TimerCallback,该代理将被定时调用
          TimerCallback timerDelegate = new TimerCallback(CheckStatus);

            //创建一个时间间隔为1s的定时器
            Timer timer = new Timer(timerDelegate, s,1000, 1000);
            s.tmr = timer;

            //主线程停下来等待Timer对象的终止
            while(s.tmr != null)
            Thread.Sleep(0);
            Console.WriteLine("Timer example done.");
            Console.ReadLine();
      }

      //下面是被定时调用的方法
      static void CheckStatus(Object state)
      {
            TimerExampleState s =(TimerExampleState)state;
            s.counter++;
            Console.WriteLine("{0} Checking Status {1}.",DateTime.Now.TimeOfDay, s.counter);

            if(s.counter == 5)
            {
                //使用Change方法改变了时间间隔
                (s.tmr).Change(10000,2000);
                Console.WriteLine("changed");
            }

            if(s.counter == 10)
            {
                Console.WriteLine("disposing of timer");
                s.tmr.Dispose();
                s.tmr = null;
            }
      }
    }
}

程序首先创建了一个定时器,它将在创建1秒之后开始每隔1秒调用一次CheckStatus()方法,当调用5次以后,在CheckStatus()方法中修改了时间间隔为2秒,并且指定在10秒后重新开始。当计数达到10次,调用Timer.Dispose()方法删除了timer对象,主线程于是跳出循环,终止程序。

如何控制好多个线程相互之间的联系,不产生冲突和重复,这需要用到互斥对象,即:System.Threading 命名空间中的 Mutex 类。

我们可以把Mutex看作一个出租车,乘客看作线程。乘客首先等车,然后上车,最后下车。当一个乘客在车上时,其他乘客就只有等他下车以后才可以上车。而线程与Mutex对象的关系也正是如此,线程使用Mutex.WaitOne()方法等待Mutex对象被释放,如果它等待的Mutex对象被释放了,它就自动拥有这个对象,直到它调用Mutex.ReleaseMutex()方法释放这个对象,而在此期间,其他想要获取这个Mutex对象的线程都只有等待。

下面这个例子使用了Mutex对象来同步四个线程,主线程等待四个线程的结束,而这四个线程的运行又是与两个Mutex对象相关联的。

其中还用到AutoResetEvent类的对象,可以把它理解为一个信号灯。这里用它的有信号状态来表示一个线程的结束。

// AutoResetEvent.Set()方法设置它为有信号状态

// AutoResetEvent.Reset()方法设置它为无信号状态

Mutex 类的程序示例:

using System;
using System.Threading;

namespace ThreadExample
{
    public class MutexSample
    {
      static Mutex gM1;
      static Mutex gM2;
      const int ITERS = 100;
      static AutoResetEvent Event1 = new AutoResetEvent(false);
      static AutoResetEvent Event2 = new AutoResetEvent(false);
      static AutoResetEvent Event3 = new AutoResetEvent(false);
      static AutoResetEvent Event4 = new AutoResetEvent(false);

      public static void Main(String[] args)
      {
            Console.WriteLine("Mutex Sample ");
            //创建一个Mutex对象,并且命名为MyMutex
            gM1 = new Mutex(true,"MyMutex");
            //创建一个未命名的Mutex 对象.
            gM2 = new Mutex(true);
            Console.WriteLine(" - Main Owns gM1 and gM2");

            AutoResetEvent[] evs = new AutoResetEvent[4];
            evs[0] = Event1; //为后面的线程t1,t2,t3,t4定义AutoResetEvent对象
            evs[1] = Event2; 
            evs[2] = Event3; 
            evs[3] = Event4; 

            MutexSample tm = new MutexSample( );
            Thread t1 = new Thread(new ThreadStart(tm.t1Start));
            Thread t2 = new Thread(new ThreadStart(tm.t2Start));
            Thread t3 = new Thread(new ThreadStart(tm.t3Start));
            Thread t4 = new Thread(new ThreadStart(tm.t4Start));
            t1.Start( );// 使用Mutex.WaitAll()方法等待一个Mutex数组中的对象全部被释放
            t2.Start( );// 使用Mutex.WaitOne()方法等待gM1的释放
            t3.Start( );// 使用Mutex.WaitAny()方法等待一个Mutex数组中任意一个对象被释放
            t4.Start( );// 使用Mutex.WaitOne()方法等待gM2的释放

            Thread.Sleep(2000);
            Console.WriteLine(" - Main releases gM1");
            gM1.ReleaseMutex( ); //线程t2,t3结束条件满足

            Thread.Sleep(1000);
            Console.WriteLine(" - Main releases gM2");
            gM2.ReleaseMutex( ); //线程t1,t4结束条件满足

            //等待所有四个线程结束
            WaitHandle.WaitAll(evs); 
            Console.WriteLine(" Mutex Sample");
            Console.ReadLine();
      }

      public void t1Start( )
      {
            Console.WriteLine("t1Start started, Mutex.WaitAll(Mutex[])");
            Mutex[] gMs = new Mutex[2];
            gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAll()方法的参数
            gMs[1] = gM2;
            Mutex.WaitAll(gMs);//等待gM1和gM2都被释放
            Thread.Sleep(2000);
            Console.WriteLine("t1Start finished, Mutex.WaitAll(Mutex[]) satisfied");
            Event1.Set( ); //线程结束,将Event1设置为有信号状态
      }
      public void t2Start( )
      {
            Console.WriteLine("t2Start started, gM1.WaitOne( )");
            gM1.WaitOne( );//等待gM1的释放
            Console.WriteLine("t2Start finished, gM1.WaitOne( ) satisfied");
            Event2.Set( );//线程结束,将Event2设置为有信号状态
      }
      public void t3Start( )
      {
            Console.WriteLine("t3Start started, Mutex.WaitAny(Mutex[])");
            Mutex[] gMs = new Mutex[2];
            gMs[0] = gM1;//创建一个Mutex数组作为Mutex.WaitAny()方法的参数
            gMs[1] = gM2;
            Mutex.WaitAny(gMs);//等待数组中任意一个Mutex对象被释放
            Console.WriteLine("t3Start finished, Mutex.WaitAny(Mutex[])");
            Event3.Set( );//线程结束,将Event3设置为有信号状态
      }
      public void t4Start( )
      {
            Console.WriteLine("t4Start started, gM2.WaitOne( )");
            gM2.WaitOne( );//等待gM2被释放
            Console.WriteLine("t4Start finished, gM2.WaitOne( )");
            Event4.Set( );//线程结束,将Event4设置为有信号状态
      }
    }
}

程序的输出结果:

Mutex Sample
- Main Owns gM1 and gM2
t1Start started, Mutex.WaitAll(Mutex[])
t2Start started, gM1.WaitOne( )
t3Start started, Mutex.WaitAny(Mutex[])
t4Start started, gM2.WaitOne( )
- Main releases gM1
t2Start finished, gM1.WaitOne( ) satisfied
t3Start finished, Mutex.WaitAny(Mutex[])
- Main releases gM2
t1Start finished, Mutex.WaitAll(Mutex[]) satisfied
t4Start finished, gM2.WaitOne( )
Mutex Sample


从执行结果可以很清楚地看到,线程t2,t3的运行是以gM1的释放为条件的,而t4在gM2释放后开始执行,t1则在gM1和gM2都被释放了之后才执行。Main()函数最后,使用WaitHandle等待所有的AutoResetEvent对象的信号,这些对象的信号代表相应线程的结束。


参考:http://kb.cnblogs.com/page/42532/

本文出自 “Ricky's Blog” 博客,请务必保留此出处http://57388.blog.51cto.com/47388/1653955

33. C# -- 线程和进程 (3)

标签:c#

原文地址:http://57388.blog.51cto.com/47388/1653955

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!