接触Python有一段时间了,经常用来做一些好玩的事,前几天跟领导聊天说到,要是能够实现全国各地访问流量的显示,那就最好了,刚好要申请一些大屏幕来,所以就想到了做这个。确实稍微大点的公司都有这类东西,确实很酷炫了,自己也搞一个这样的。下面说一下实现过程:
1、首先是数据:采集的话我选择的是读取nginx日志。可以提供的思路是,我们选择同一收集的方式,收集到大数据分析机器(同意收集的工具还是很多的,比如rsyslog),然后通过正则或者一类东西筛选出我们需要的IP(当然日志肯定是按天切割的):
2、收集到的数据,通过调用公网的IP查询接口进行筛选,筛选,找出对应的城市、入库
3、最后就是前端展示了,这里我选用的是百度的echarts,百度已经提供了比较完善的API和说明文档,自己去阅读就好。
给一下前端的代码:
<!DOCTYPE html> <head> <meta charset="utf-8"> <title>ECharts</title> </head> <body> <!-- 为ECharts准备一个具备大小(宽高)的Dom --> <div id="main" style="height:800px" ></div> <!-- ECharts单文件引入 --> <script src="http://echarts.baidu.com/build/dist/echarts.js"></script> <script type="text/javascript"> // 路径配置 require.config({ paths: { echarts: ‘http://echarts.baidu.com/build/dist‘ } }); // 使用 require( [ ‘echarts‘, ‘echarts/chart/map‘ ], function (ec) { // 基于准备好的dom,初始化echarts图表 var myChart = ec.init(document.getElementById(‘main‘)); var option = { backgroundColor: ‘#1b1b1b‘, color: [‘gold‘,‘aqua‘,‘lime‘], title : { text: ‘众划算‘, subtext:‘全国各地访问数据‘, x:‘center‘, textStyle : { color: ‘#fff‘ } }, tooltip : { trigger: ‘item‘, formatter: ‘{b}‘ }, legend: { orient: ‘vertical‘, x:‘left‘, data:[‘北京 Top10‘], selectedMode: ‘single‘, selected:{ ‘上海 Top10‘ : false, ‘广州 Top10‘ : false }, textStyle : { color: ‘#fff‘ } }, toolbox: { show : true, orient : ‘vertical‘, x: ‘right‘, y: ‘center‘, feature : { mark : {show: true}, dataView : {show: true, readOnly: false}, restore : {show: true}, saveAsImage : {show: true} } }, dataRange: { min : 0, max : 100, calculable : true, color: [‘#ff3333‘, ‘orange‘, ‘yellow‘,‘lime‘,‘aqua‘], textStyle:{ color:‘#fff‘ } }, series : [ { name: ‘全国‘, type: ‘map‘, roam: true, hoverable: false, mapType: ‘china‘, itemStyle:{ normal:{ borderColor:‘rgba(100,149,237,1)‘, borderWidth:0.5, areaStyle:{ color: ‘#1b1b1b‘ } } }, data:[], markLine : { smooth:true, symbol: [‘none‘, ‘circle‘], symbolSize : 1, itemStyle : { normal: { color:‘#fff‘, borderWidth:1, borderColor:‘rgba(30,144,255,0.5)‘ } }, data : [ [{name:‘北京‘},{name:‘内蒙古‘}], [{name:‘北京‘},{name:‘北海‘}], [{name:‘北京‘},{name:‘广东‘}], [{name:‘北京‘},{name:‘河南‘}], [{name:‘北京‘},{name:‘吉林‘}], [{name:‘北京‘},{name:‘长治‘}], [{name:‘北京‘},{name:‘重庆‘}], [{name:‘北京‘},{name:‘湖南‘}], [{name:‘北京‘},{name:‘常州‘}], [{name:‘北京‘},{name:‘丹东‘}], [{name:‘北京‘},{name:‘辽宁‘}], [{name:‘北京‘},{name:‘东营‘}], [{name:‘北京‘},{name:‘延安‘}], [{name:‘北京‘},{name:‘福建‘}], [{name:‘北京‘},{name:‘海口‘}], [{name:‘北京‘},{name:‘呼和浩特‘}], [{name:‘北京‘},{name:‘安徽‘}], [{name:‘北京‘},{name:‘杭州‘}], [{name:‘北京‘},{name:‘黑龙江‘}], [{name:‘北京‘},{name:‘舟山‘}], [{name:‘北京‘},{name:‘银川‘}], [{name:‘北京‘},{name:‘衢州‘}], [{name:‘北京‘},{name:‘江西‘}], [{name:‘北京‘},{name:‘云南‘}], [{name:‘北京‘},{name:‘贵州‘}], [{name:‘北京‘},{name:‘甘肃‘}], [{name:‘北京‘},{name:‘广西‘}], [{name:‘北京‘},{name:‘拉萨‘}], [{name:‘北京‘},{name:‘连云港‘}], [{name:‘北京‘},{name:‘临沂‘}], [{name:‘北京‘},{name:‘柳州‘}], [{name:‘北京‘},{name:‘宁波‘}], [{name:‘北京‘},{name:‘南京‘}], [{name:‘北京‘},{name:‘南宁‘}], [{name:‘北京‘},{name:‘江苏‘}], [{name:‘北京‘},{name:‘上海‘}], [{name:‘北京‘},{name:‘沈阳‘}], [{name:‘北京‘},{name:‘陕西‘}], [{name:‘北京‘},{name:‘汕头‘}], [{name:‘北京‘},{name:‘深圳‘}], [{name:‘北京‘},{name:‘青岛‘}], [{name:‘北京‘},{name:‘山东‘}], [{name:‘北京‘},{name:‘山西‘}], [{name:‘北京‘},{name:‘乌鲁木齐‘}], [{name:‘北京‘},{name:‘潍坊‘}], [{name:‘北京‘},{name:‘威海‘}], [{name:‘北京‘},{name:‘浙江‘}], [{name:‘北京‘},{name:‘无锡‘}], [{name:‘北京‘},{name:‘厦门‘}], [{name:‘北京‘},{name:‘西宁‘}], [{name:‘北京‘},{name:‘徐州‘}], [{name:‘北京‘},{name:‘烟台‘}], [{name:‘北京‘},{name:‘盐城‘}], [{name:‘北京‘},{name:‘珠海‘}], [{name:‘北京‘},{name:‘香港‘}], [{name:‘北京‘},{name:‘湖北‘}], ], }, geoCoord: { ‘上海‘: [121.4648,31.2891], ‘东莞‘: [113.8953,22.901], ‘东营‘: [118.7073,37.5513], ‘中山‘: [113.4229,22.478], ‘临汾‘: [111.4783,36.1615], ‘临沂‘: [118.3118,35.2936], ‘丹东‘: [124.541,40.4242], ‘丽水‘: [119.5642,28.1854], ‘乌鲁木齐‘: [87.9236,43.5883], ‘佛山‘: [112.8955,23.1097], ‘河北‘: [115.0488,39.0948], ‘甘肃‘: [103.5901,36.3043], ‘内蒙古‘: [110.3467,41.4899], ‘北京‘: [116.4551,40.2539], ‘北海‘: [109.314,21.6211], ‘南京‘: [118.8062,31.9208], ‘南宁‘: [108.479,23.1152], ‘广西‘: [108.479,23.1154], ‘江西‘: [116.0046,28.6633], ‘江苏‘: [121.1023,32.1625], ‘厦门‘: [118.1689,24.6478], ‘台州‘: [121.1353,28.6688], ‘安徽‘: [117.29,32.0581], ‘呼和浩特‘: [111.4124,40.4901], ‘咸阳‘: [108.4131,34.8706], ‘黑龙江‘: [127.9688,45.368], ‘唐山‘: [118.4766,39.6826], ‘嘉兴‘: [120.9155,30.6354], ‘大同‘: [113.7854,39.8035], ‘辽宁‘: [122.2229,39.4409], ‘天津‘: [117.4219,39.4189], ‘山西‘: [112.3352,37.9413], ‘威海‘: [121.9482,37.1393], ‘宁波‘: [121.5967,29.6466], ‘宝鸡‘: [107.1826,34.3433], ‘宿迁‘: [118.5535,33.7775], ‘常州‘: [119.4543,31.5582], ‘广东‘: [113.5107,23.2196], ‘香港‘: [113.5107,31.3569], ‘廊坊‘: [116.521,39.0509], ‘延安‘: [109.1052,36.4252], ‘张家口‘: [115.1477,40.8527], ‘徐州‘: [117.5208,34.3268], ‘德州‘: [116.6858,37.2107], ‘惠州‘: [114.6204,23.1647], ‘四川‘: [103.9526,30.7617], ‘扬州‘: [119.4653,32.8162], ‘承德‘: [117.5757,41.4075], ‘拉萨‘: [91.1865,30.1465], ‘无锡‘: [120.3442,31.5527], ‘日照‘: [119.2786,35.5023], ‘云南‘: [102.9199,25.4663], ‘杭州‘: [119.5313,29.8773], ‘枣庄‘: [117.323,34.8926], ‘柳州‘: [109.3799,24.9774], ‘株洲‘: [113.5327,27.0319], ‘湖北‘: [114.3896,30.6628], ‘汕头‘: [117.1692,23.3405], ‘江门‘: [112.6318,22.1484], ‘沈阳‘: [123.1238,42.1216], ‘沧州‘: [116.8286,38.2104], ‘河源‘: [114.917,23.9722], ‘泉州‘: [118.3228,25.1147], ‘泰安‘: [117.0264,36.0516], ‘泰州‘: [120.0586,32.5525], ‘山东‘: [117.1582,36.8701], ‘济宁‘: [116.8286,35.3375], ‘海口‘: [110.3893,19.8516], ‘淄博‘: [118.0371,36.6064], ‘淮安‘: [118.927,33.4039], ‘深圳‘: [114.5435,22.5439], ‘清远‘: [112.9175,24.3292], ‘浙江‘: [120.498,27.8119], ‘渭南‘: [109.7864,35.0299], ‘湖州‘: [119.8608,30.7782], ‘湘潭‘: [112.5439,27.7075], ‘滨州‘: [117.8174,37.4963], ‘潍坊‘: [119.0918,36.524], ‘烟台‘: [120.7397,37.5128], ‘玉溪‘: [101.9312,23.8898], ‘珠海‘: [113.7305,22.1155], ‘盐城‘: [120.2234,33.5577], ‘盘锦‘: [121.9482,41.0449], ‘石家庄‘: [114.4995,38.1006], ‘福建‘: [119.4543,25.9222], ‘秦皇岛‘: [119.2126,40.0232], ‘绍兴‘: [120.564,29.7565], ‘聊城‘: [115.9167,36.4032], ‘肇庆‘: [112.1265,23.5822], ‘舟山‘: [122.2559,30.2234], ‘苏州‘: [120.6519,31.3989], ‘莱芜‘: [117.6526,36.2714], ‘菏泽‘: [115.6201,35.2057], ‘营口‘: [122.4316,40.4297], ‘葫芦岛‘: [120.1575,40.578], ‘衡水‘: [115.8838,37.7161], ‘衢州‘: [118.6853,28.8666], ‘西宁‘: [101.4038,36.8207], ‘陕西‘: [109.1162,34.2004], ‘贵州‘: [106.6992,26.7682], ‘连云港‘: [119.1248,34.552], ‘邢台‘: [114.8071,37.2821], ‘邯郸‘: [114.4775,36.535], ‘河南‘: [113.4668,34.6234], ‘鄂尔多斯‘: [108.9734,39.2487], ‘重庆‘: [107.7539,30.1904], ‘金华‘: [120.0037,29.1028], ‘铜川‘: [109.0393,35.1947], ‘银川‘: [106.3586,38.1775], ‘镇江‘: [119.4763,31.9702], ‘吉林‘: [125.8154,44.2584], ‘湖南‘: [113.0823,28.2568], ‘长治‘: [112.8625,36.4746], ‘阳泉‘: [113.4778,38.0951], ‘青岛‘: [120.4651,36.3373], ‘韶关‘: [113.7964,24.7028] } }, { name: ‘北京 Top10‘, type: ‘map‘, mapType: ‘china‘, data:[], markLine : { smooth:true, effect : { show: true, scaleSize: 1, period: 30, color: ‘#fff‘, shadowBlur: 10 }, itemStyle : { normal: { borderWidth:1, lineStyle: { type: ‘solid‘, shadowBlur: 10 } } }, data : [ {%for x in all_data%} [{name:‘北京‘}, {name:‘{{x.city}}‘,value:{{x.num}}}], {%endfor%} ] }, markPoint : { symbol:‘emptyCircle‘, symbolSize : function (v){ return 10 + v/10 }, effect : { show: true, shadowBlur : 0 }, itemStyle:{ normal:{ label:{show:false} }, emphasis: { label:{position:‘top‘} } }, data : [ {%for i in all_data%} {name:‘{{i.city}}‘,value:{{i.num}}}, {%endfor%} ] } }, ] }; // 为echarts对象加载数据 myChart.setOption(option); } ); </script> </body>
后端的操作,其实也可以是用saltstack远程分析nginx脚本,性能不影响web服务器的话,直接远程入库就好。
本文出自 “小罗” 博客,请务必保留此出处http://xiaoluoge.blog.51cto.com/9141967/1653942
原文地址:http://xiaoluoge.blog.51cto.com/9141967/1653942