码迷,mamicode.com
首页 > 编程语言 > 详细

小谈KMP算法

时间:2015-05-27 12:24:43      阅读:156      评论:0      收藏:0      [点我收藏+]

标签:kmp

刚接触KMP算法时,真是一头雾水,主要就是关于next跳转表是如何算出的,看了很久才勉强看明白,下面就是一点个人见解。


1.首先我要推荐先看这篇文章:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

看完这篇文章之后能明白kmp的主要思路是什么了

字符串匹配的KMP算法

作者: 阮一峰

日期: 2013年5月 1日

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

技术分享

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

技术分享

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

技术分享

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

技术分享

因为B与A不匹配,搜索词再往后移。

3.

技术分享

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

技术分享

接着比较字符串和搜索词的下一个字符,还是相同。

5.

技术分享

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

技术分享

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

技术分享

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

技术分享

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

技术分享

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

技术分享

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

技术分享

因为空格与A不匹配,继续后移一位。

12.

技术分享

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

技术分享

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

技术分享

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

技术分享

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

技术分享

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。



2.再接着就是要思考怎么得出next数组即上文中的部分匹配数据

那么我要推荐看这篇较难理解的文章了:http://blog.csdn.net/joylnwang/article/details/6778316

KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法。但是相较于其他模式匹配算法,该算法晦涩难懂,第一次接触该算法的读者往往会看得一头雾水,主要原因是KMP算法在构造跳转表next过程中进行了多个层面的优化和抽象,使得KMP算法进行模式匹配的原理显得不那么直白。本文希望能够深入KMP算法,将该算法的各个细节彻底讲透,扫除读者对该算法的困扰。

KMP算法对于朴素匹配算法的改进是引入了一个跳转表next[]。以模式字符串abcabcacab为例,其跳转表为:

j  1  2  3  4  5  6  7  8  9 10
pattern[j] a b c a b c a c a b
next[j] 0 1 1 0 1 1 0 5 0 1
跳转表的用途是,当目标串target中的某个子部target[m...m+(i-1)]与pattern串的前i个字符pattern[1...i]相匹配时,如果target[m+i]与pattern[i+1]匹配失败,程序不会像朴素匹配算法那样,将pattern[1]与target[m+1]对其,然后由target[m+1]向后逐一进行匹配,而是会将模式串向后移动i+1 - next[i+1]个字符,使得pattern[next[i+1]]与target[m+i]对齐,然后再由target[m+i]向后与依次执行匹配。

举例说明,如下是使用上例的模式串对目标串执行匹配的步骤

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
b a b c b a b c a b c a a b c a b c a b c a c a b c
a b c a b c a c a b
















a b c a b c a c a b



















a b c a b c a c a b


















a b c a b c a c a b



















a b c a b c a c a b


















a b c a b c a c a b
通过模式串的5次移动,完成了对目标串的模式匹配。这里以匹配的第3步为例,此时pattern串的第1个字母与target[6]对齐,从6向后依次匹配目标串,到target[13]时发现target[13]=‘a‘,而pattern[8]=‘c‘,匹配失败,此时next[8]=5,所以将模式串向后移动8-next[8] = 3个字符,将pattern[5]与target[13]对齐,然后由target[13]依次向后执行匹配操作。在整个匹配过程中,无论模式串如何向后滑动,目标串的输入字符都在不会回溯,直到找到模式串,或者遍历整个目标串都没有发现匹配模式为止。

next跳转表,在进行模式匹配,实现模式串向后移动的过程中,发挥了重要作用。这个表看似神奇,实际从原理上讲并不复杂,对于模式串而言,其前缀字符串,有可能也是模式串中的非前缀子串,这个问题我称之为前缀包含问题。以模式串abcabcacab为例,其前缀4 abca,正好也是模式串的一个子串abc(abca)cab,所以当目标串与模式串执行匹配的过程中,如果直到第8个字符才匹配失败,同时也意味着目标串当前字符之前的4个字符,与模式串的前4个字符是相同的,所以当模式串向后移动的时候,可以直接将模式串的第5个字符与当前字符对齐,执行比较,这样就实现了模式串一次性向前跳跃多个字符。所以next表的关键就是解决模式串的前缀包含。当然为了保证程序的正确性,对于next表的值,还有一些限制条件,后面会逐一说明。

如何以较小的代价计算KMP算法中所用到的跳转表next,是算法的核心问题。这里我们引入一个概念f(j),其含义是,对于模式串的第j个字符pattern[j],f(j)是所有满足使pattern[1...k-1] = pattern[j-(k-1)...j - 1](k < j)成立的k的最大值。还是以模式串abcabcacab为例,当处理到pattern[8] = ‘c‘时,我们想找到‘c‘前面的k-1个字符,使得pattern[1...k-1] = pattern[8-(k-1)...7],这里我们可以使用一个笨法,让k-1从1到6递增,然后依次比较,直到找到最大值的k为止,比较过程如下

k-1 前缀 关系 子串
1 a == a
2 ab != ca
3 abc != bca
4 abca == abca
5 abcab != cabca
6 abcabc != bcabca
因为要取最大的k,所以k-1=1不是我们要找的结果,最后求出k的最大值为4+1=5。但是这样的方法比较低效,而且没有充分利用到之前的计算结果。在我们处理pattern[8] = ‘c‘之前,pattern[7] = ‘a‘的最大前缀包含问题已经解决,f(7) = 4,也就是说,pattern[4...6] = pattern[1...3],此时我们可以比较pattern[7]与pattern[4],如果pattern[4]=pattern[7],对于pattern[8]而言,说明pattern[1...4]=pattern[4...7],此时,f(8) = f(7) + 1 = 5。再以pattern[9]为例,f(8) = 5,pattern[1...4]=pattern[4...7],但是pattern[8] != pattern[5],所以pattern[1...5]!=pattern[4...8],此时无法利用f(8)的值直接计算出f(9)。

j  1  2  3  4  5  6  7  8  9 10
pattern[j] a b c a b c a c a b
next[j] 0 1 1 0 1 1 0 5 0 1
f(j) 0 1 1 1 2 3 4 5 1 2
我们可能考虑还是使用之前的笨方法来求出f(9),但是且慢,利用之前的结果,我们还可以得到更多的信息。还是以pattern[8]为例。f(8) = 5,pattern[1...4]=pattern[4...7],此时我们需要关注pattern[8],如果pattern[8] != pattern[5],那么在匹配算法如果匹配到pattern[8]才失败,此时就可以将输入字符target[n]与pattern[f(8)] = pattern[5]对齐,再向后依次执行匹配,所以此时的next[8] = f(8)(此平移的正确性,后面会作出说明)。而如果pattern[8] = pattern[5],那么pattern[1...5]=pattern[4...8]如果target[n]与pattern[8]匹配失败,那么同时也意味着target[n-5...n]!=pattern[4...8],那么将target[n]与pattern[5]对齐,target[n-5...n]也必然不等于pattern[1...5],此时我们需要关注f(5) = 2,这意味着pattern[1] = pattern[4],因为pattern[1...4]=pattern[4...7],所以pattern[4]=pattern[7]=pattern[1],此时我们再来比较pattern[8]与pattern[2],如果pattern[8] != pattern[2],就可以将target[n]与pattern[2],然后比较二者是否相等,此时next[8] = next[5] = f(2)。如果pattern[8] = pattern[2],那么还需要考察pattern[f(2)],直到回溯到模式串头部为止。下面给出根据f(j)值求next[j]的递推公式:

如果 pattern[j] != pattern[f(j)],next[j] = f(j);

如果 pattern[j] = pattern[f(j)],next[j] = next[f(j)];

当要求f(9)时,f(8)和next[8]已经可以得到,此时我们可以考察pattern[next[8]],根据前面对于next值的计算方式,我们知道pattern[8] != pattern[next[8]]。我们的目的是要找到pattern[9]的包含前缀,而pattern[8] != pattern[5],pattern[1...5]!=pattern[4...8]。我们继续考察pattern[next[5]]。如果pattern[8] = pattern[next[5]],假设next[5] = 3,说明pattern[1...2] = pattern[6...7],且pattern[3] = pattern[8],此时对于pattern[9]而言,就有pattern[1...3]=pattern[6...8],我们就找到了f(9) = 4。这里我们考察的是pattern[next[j]],而不是pattern[f(j)],这是因为对于next[]而言,pattern[j] != pattern[next[j]],而对于f()而言,pattern[j]与pattern[f(j)]不一定不相等,而我们的目的就是要在pattern[j] != pattern[f(j)]的情况下,解决f(j+1)的问题,所以使用next[j]向前回溯,是正确的。

现在,我们来总结一下next[j]和f(j)的关系,next[j]是所有满足pattern[1...k - 1] = pattern[(j - (k - 1))...j -1](k < j),且pattern[k] != pattern[j]的k中,k的最大值。而f(j)是满足pattern[1...k - 1] = pattern[(j - (k - 1))...j -1](k < j)的k中,k的最大值。还是以上例的模式来说,对于第7个元素,其f(j) = 4, 说明pattern[7]的前3个字符与模式的前缀3相同,但是由于pattern[7] = pattern[4], 所以next[7] != 4。

通过以上这些,读者可能会有疑问,为什么不用f(j)直接作为KMP算法的跳转表呢?实际从程序正确性的角度讲是可以的,但是使用next[j]作为跳转表更加高效。还是以上面的模式为例,当target[n]与pattern[7]发生匹配失败时,根据f(j),target[n]要继续与pattern[4]进行比较。但是在计算f(8)的时候,我们会得出pattern[7] = pattern[4],所以target[n]与pattern[4]的比较也必然失败,所以target[n]与pattern[4]的比较是多余的,我们需要target[n]与更小的pattern进行比较。当然使用f(j)作为跳转表也能获得不错的性能,但是KMP三人将问题做到了极致。

现在整理一下思路:朴素匹配因为效率过低所以产生了KMP算法,接着是构造KMP算法,需要一个next数组来存放每个模式字符串需要平移的位移,如上文所说,那么如何得到next数组呢?接下来需要引入f数组来得到next数组,f数组为前缀和后缀相同的长度的最大值,如上文所说。难点就是推导出

pattern[j] != pattern[f(j)],next[j] = f(j);

pattern[j] = pattern[f(j)],next[j] = next[f(j)];

接下来附上源码(与上文有所不同,应该是未优化的)

void build_next(int len2)
{
	int i=0,j=-1;
	next[0] = -1;
	while (i < len2)
	{
		if (j==-1 || str2[i] == str2[j])
		{
			i++;
			j++;
			if (str2[i] != str2[j])
			{
				next[i] = j;
			}
			else
				next[i] = next[j];
		}
		else
			j = next[j];
	}
}

int KMP(int len1,int len2)
{
    build_next(len2);
	int i=0,j=0,cnt=0;

	while (i < len1)
	{
		if (j==-1 || str1[i] == str2[j])
		{
			i++;
			j++;
		}
		else
			j = next[j];
		if (j==len2)
		{
            cnt++;
			j = next[j];
		}
	}
	return cnt;
}
看完了以上所有的文字后就可以做这道题目了:HDU  1686

http://acm.hdu.edu.cn/showproblem.php?pid=1686

#include <stdio.h>
#include <string.h>

int next[10005];
char str1[1000005],str2[10005];

void build_next(int len2)
{
	int i=0,j=-1;
	next[0] = -1;
	while (i < len2)
	{
		if (j==-1 || str2[i] == str2[j])
		{
			i++;
			j++;
			if (str2[i] != str2[j])
			{
				next[i] = j;
			}
			else
				next[i] = next[j];
		}
		else
			j = next[j];
	}
}

int KMP(int len1,int len2)
{
    build_next(len2);
	int i=0,j=0,cnt=0;

	while (i < len1)
	{
		if (j==-1 || str1[i] == str2[j])
		{
			i++;
			j++;
		}
		else
			j = next[j];
		if (j==len2)
		{
            cnt++;
			j = next[j];
		}
	}
	return cnt;
}

int main()
{
	int N;
	scanf("%d%*c",&N);  //碰到数字和字符转交替输入要注意回车过滤
	while (N--)
	{
        gets(str2);
		gets(str1);
		printf("%d\n",KMP(strlen(str1),strlen(str2)));
	}
	return 0;
}

Oulipo

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6327    Accepted Submission(s): 2550


Problem Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive ‘T‘s is not unusual. And they never use spaces.

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.

 

Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

One line with the word W, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with |W| ≤ |T| ≤ 1,000,000.
 

Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.

 

Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
 

Sample Output
1 3 0
 

Source

小谈KMP算法

标签:kmp

原文地址:http://blog.csdn.net/xinwen1995/article/details/46043423

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!