码迷,mamicode.com
首页 > Web开发 > 详细

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.2

时间:2015-05-28 21:41:29      阅读:1193      评论:0      收藏:0      [点我收藏+]

标签:spark   mllib   deep learning   深度学习   神经网络   

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.2

http://blog.csdn.net/sunbow0/

第一章Neural Net(神经网络)

2基础及源码解析

2.1 Neural Net神经网络基础知识

2.1.1 神经网络

基础知识参照:

http://deeplearning.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C

2.1.2 反向传导算法

基础知识参照:

http://deeplearning.stanford.edu/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95

2.1.3 Denoise Autoencoder

当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),具体加入的方法就是把训练样例中的一些数据调整变为0,inputZeroMaskedFraction表示了调整的比例

这部分请参见《Extracting and Composing Robust Features with Denoising Autoencoders》这篇论文。参照:

http://wenku.baidu.com/link?url=lhFEf7N3n2ZG2K-mfWsts2on9gN5K-KkrMuuNvHU2COdehkDv9vxVsw-F23e5Yiww_38kWYB56hskLXwVp0_9c7DLw7XZX_w8NoNXfxtoIm

2.1.4 Dropout

训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择。Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能。

 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了。参照:

http://wenku.baidu.com/link?url=WpsRjVTrMIhCNqDSDnzm8M6nz2Q7AoNhpnY2XxM9SFYkGni8t94JOgsZUCbSuccOnO8mJyGx67RGLjPr8D9aoxhyOUkYtvfitU9ilaQ-Rqm

2.1.5 Sparsity Penalty

对神经网络每层节点的sparsity计算,对没达到sparsitytarget的参数的惩罚系数的节点进行惩罚。

2.2 Deep Learning NN源码解析

2.2.1 NN代码结构

NN源码主要包括:NeuralNet,NeuralNetModel两个类源码结构如下:

技术分享

NeuralNet结构:

技术分享

技术分享

NeuralNetModel结构:

技术分享

2.2.2 NN训练过程

技术分享

2.2.3 NeuralNet解析

(1) NNLabel

/**

 * label:目标矩阵

 * nna:神经网络每层节点的输出值,a(0),a(1),a(2)

 * error:输出层与目标值的误差矩阵

 */

caseclass NNLabel(label: BDM[Double], nna: ArrayBuffer[BDM[Double]], error: BDM[Double]) extends Serializable

NNLabel:自定义数据类型,存储样本数据,格式:目标值,输出值,误差。

(2) NNConfig

/**

 * 配置参数

 */

caseclass NNConfig(

  size: Array[Int],

  layer: Int,

  activation_function: String,

  learningRate: Double,

  momentum: Double,

  scaling_learningRate: Double,

  weightPenaltyL2: Double,

  nonSparsityPenalty: Double,

  sparsityTarget: Double,

  inputZeroMaskedFraction: Double,

  dropoutFraction: Double,

  testing: Double,

  output_function: String) extends Serializable

NNConfig:定义参数配置,存储配置信息。参数说明:

  size: 神经网络结构

  layer: 神经网络层数

  activation_function: 隐含层函数

  learningRate: 学习率

  momentum: Momentum因子

  scaling_learningRate: 学习迭代因子

  weightPenaltyL2: 正则化L2因子

  nonSparsityPenalty: 权重稀疏度惩罚因子

  sparsityTarget: 权重稀疏度目标值

  inputZeroMaskedFraction: 权重加入噪声因子

  dropoutFraction: Dropout因子

  testing: testing

(3) InitialWeight

初始化权重

/**

   * 初始化权重

   * 初始化为一个很小的、接近零的随机值

   */

  def InitialWeight(size: Array[Int]): Array[BDM[Double]] = {

    // 初始化权重参数

    // weights and weight momentum

    // nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) + nn.size(i - 1)));

    valn = size.length

    valnn_W = ArrayBuffer[BDM[Double]]()

    for (i <- 1 to n - 1) {

      vald1 = BDM.rand(size(i), size(i - 1) + 1)

      d1 :-= 0.5

      valf1 = 2 * 4 * sqrt(6.0 / (size(i) + size(i - 1)))

      vald2 = d1 :* f1

      //val d3 = new DenseMatrix(d2.rows, d2.cols, d2.data, d2.isTranspose)

      //val d4 = Matrices.dense(d2.rows, d2.cols, d2.data)

      nn_W += d2

    }

    nn_W.toArray

  }

(4) InitialWeightV

初始化权重vW

  /**

   * 初始化权重vW

   * 初始化为0

   */

  def InitialWeightV(size: Array[Int]): Array[BDM[Double]] = {

    // 初始化权重参数

    // weights and weight momentum

    // nn.vW{i - 1} = zeros(size(nn.W{i - 1}));

    valn = size.length

    valnn_vW = ArrayBuffer[BDM[Double]]()

    for (i <- 1 to n - 1) {

      vald1 = BDM.zeros[Double](size(i), size(i - 1) + 1)

      nn_vW += d1

    }

    nn_vW.toArray

  }

(5) InitialActiveP

初始神经网络激活度

  /**

   * 初始每一层的平均激活度

   * 初始化为0

   */

  def InitialActiveP(size: Array[Int]): Array[BDM[Double]] = {

    // 初始每一层的平均激活度

    // average activations (for use with sparsity)

    // nn.p{i}     = zeros(1, nn.size(i)); 

    valn = size.length

    valnn_p = ArrayBuffer[BDM[Double]]()

    nn_p += BDM.zeros[Double](1, 1)

    for (i <- 1 to n - 1) {

      vald1 = BDM.zeros[Double](1, size(i))

      nn_p += d1

    }

    nn_p.toArray

  }

(6) AddNoise

样本数据增加随机噪声

  /**

   * 增加随机噪声

   * 若随机值>=Fraction,值不变,否则改为0

   */

  def AddNoise(rdd: RDD[(BDM[Double], BDM[Double])], Fraction: Double): RDD[(BDM[Double], BDM[Double])] = {

    valaddNoise = rdd.map { f =>

      valfeatures = f._2

      vala = BDM.rand[Double](features.rows, features.cols)

      vala1 = a :>= Fraction

      vald1 = a1.data.map { f => if (f == true) 1.0else0.0 }

      vala2 = new BDM(features.rows, features.cols, d1)

      valfeatures2 = features :* a2

      (f._1, features2)

    }

    addNoise

  }

 

(7) DropoutWeight

神经网络权重随机休眠。

  /**

   * 随机让网络某些隐含层节点的权重不工作

   * 若随机值>=Fraction,矩阵值不变,否则改为0

   */

  def DropoutWeight(matrix: BDM[Double], Fraction: Double): Array[BDM[Double]] = {

    valaa = BDM.rand[Double](matrix.rows, matrix.cols)

    valaa1 = aa :> Fraction

    vald1 = aa1.data.map { f => if (f == true) 1.0else0.0 }

    valaa2 = new BDM(matrix.rows: Int, matrix.cols: Int, d1: Array[Double])

    valmatrix2 = matrix :* aa2

    Array(aa2, matrix2)

  }

 

(8) NNff

神经网络进行前向传播,从输入层->隐含层->输出层,计算每一层每一个节点的输出值,其中输入值为样本数据。输入参数:

batch_xy2:样本数据

bc_config:神经网络配置参数

bc_nn_W:神经网络当前权重参数

输出参数:

RDD[(NNLabel, Array[BDM[Double]])],格式为(NNLabel(label, nn_a, error), dropOutMask)

/**

   * nnff是进行前向传播

   * 计算神经网络中的每个节点的输出值;

   */

  def NNff(

    batch_xy2: RDD[(BDM[Double], BDM[Double])],

    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],

    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): RDD[(NNLabel, Array[BDM[Double]])] = {

    // 1:a(1)=[1 x]

    // 增加偏置项b

    valtrain_data1 = batch_xy2.map { f =>

      vallable = f._1

      valfeatures = f._2

      valnna = ArrayBuffer[BDM[Double]]()

      valBm1 = new BDM(features.rows, 1, Array.fill(features.rows * 1)(1.0))

      valfeatures2 = BDM.horzcat(Bm1, features)

      valerror = BDM.zeros[Double](lable.rows, lable.cols)

      nna += features2

      NNLabel(lable, nna, error)

    }

    valtrain_data2 = train_data1.map { f =>

      valnn_a = f.nna

      valdropOutMask = ArrayBuffer[BDM[Double]]()

      dropOutMask += new BDM[Double](1, 1, Array(0.0))

      for (j <- 1 to bc_config.value.layer - 2) {

        // 计算每层输出

        // Calculate the unit‘s outputs (including the bias term)

        // nn.a{i} = sigm(nn.a{i - 1} * nn.W{i - 1}‘)

        // nn.a{i} = tanh_opt(nn.a{i - 1} * nn.W{i - 1}‘);           

        valA1 = nn_a(j - 1)

        valW1 = bc_nn_W.value(j - 1)

        valaw1 = A1 * W1.t

        valnnai1 = bc_config.value.activation_functionmatch {

          case"sigm" =>

            valaw2 = NeuralNet.sigm(aw1)

            aw2

          case"tanh_opt" =>

            valaw2 = NeuralNet.tanh_opt(aw1)

            //val aw2 = Btanh(aw1 * (2.0 / 3.0)) * 1.7159

            aw2

        }

        // dropout计算

        // Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分

        // 但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了

        // 参照 http://www.cnblogs.com/tornadomeet/p/3258122.html  

        valdropoutai = if (bc_config.value.dropoutFraction > 0) {

          if (bc_config.value.testing == 1) {

            valnnai2 = nnai1 * (1.0 - bc_config.value.dropoutFraction)

            Array(new BDM[Double](1, 1, Array(0.0)), nnai2)

          } else {

            NeuralNet.DropoutWeight(nnai1, bc_config.value.dropoutFraction)

          }

        } else {

          valnnai2 = nnai1

          Array(new BDM[Double](1, 1, Array(0.0)), nnai2)

        }

        valnnai2 = dropoutai(1)

        dropOutMask += dropoutai(0)

        // Add the bias term

        // 增加偏置项b

        // nn.a{i} = [ones(m,1) nn.a{i}];

        valBm1 = BDM.ones[Double](nnai2.rows, 1)

        valnnai3 = BDM.horzcat(Bm1, nnai2)

        nn_a += nnai3

      }

      (NNLabel(f.label, nn_a, f.error), dropOutMask.toArray)

    }

 

    // 输出层计算

    valtrain_data3 = train_data2.map { f =>

      valnn_a = f._1.nna

      // nn.a{n} = sigm(nn.a{n - 1} * nn.W{n - 1}‘);

      // nn.a{n} = nn.a{n - 1} * nn.W{n - 1}‘;         

      valAn1 = nn_a(bc_config.value.layer - 2)

      valWn1 = bc_nn_W.value(bc_config.value.layer - 2)

      valawn1 = An1 * Wn1.t

      valnnan1 = bc_config.value.output_functionmatch {

        case"sigm" =>

          valawn2 = NeuralNet.sigm(awn1)

          //val awn2 = 1.0 / (Bexp(awn1 * (-1.0)) + 1.0)

          awn2

        case"linear" =>

          valawn2 = awn1

          awn2

      }

      nn_a += nnan1

      (NNLabel(f._1.label, nn_a, f._1.error), f._2)

    }

 

    // error and loss

    // 输出误差计算

    // nn.e = y - nn.a{n};

    // val nn_e = batch_y - nnan

    valtrain_data4 = train_data3.map { f =>

      valbatch_y = f._1.label

      valnnan = f._1.nna(bc_config.value.layer - 1)

      valerror = (batch_y - nnan)

      (NNLabel(f._1.label, f._1.nna, error), f._2)

    }

    train_data4

  }

 

(9) ActiveP

通过神经网络进行前向传播,计算每一层每一个节点的输出值,计算每个节点的平均值,也即节点的稀疏度。输入参数:

train_nnff:NNff的输出数据

bc_config:神经网络配置参数

nn_p_old:更新前数据

输出参数:

Array[BDM[Double]],输出节点的平均值。

/**

   * sparsity计算,网络稀疏度

   * 计算每个节点的平均值

   */

  def ActiveP(

    train_nnff: RDD[(NNLabel, Array[BDM[Double]])],

    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],

    nn_p_old: Array[BDM[Double]]): Array[BDM[Double]] = {

    valnn_p = ArrayBuffer[BDM[Double]]()

    nn_p += BDM.zeros[Double](1, 1)

    // calculate running exponential activations for use with sparsity

    // sparsity计算,计算sparsitynonSparsityPenalty 是对没达到sparsitytarget的参数的惩罚系数

    for (i <- 1 to bc_config.value.layer - 1) {

      valpi1 = train_nnff.map(f => f._1.nna(i))

      valinitpi = BDM.zeros[Double](1, bc_config.value.size(i))

      val (piSum, miniBatchSize) = pi1.treeAggregate((initpi, 0L))(

        seqOp = (c, v) => {

          // c: (nnasum, count), v: (nna)

          valnna1 = c._1

          valnna2 = v

          valnnasum = nna1 + nna2

          (nnasum, c._2 + 1)

        },

        combOp = (c1, c2) => {

          // c: (nnasum, count)

          valnna1 = c1._1

          valnna2 = c2._1

          valnnasum = nna1 + nna2

          (nnasum, c1._2 + c2._2)

        })

      valpiAvg = piSum / miniBatchSize.toDouble

      valoldpi = nn_p_old(i)

      valnewpi = (piAvg * 0.01) + (oldpi * 0.09)

      nn_p += newpi

    }

    nn_p.toArray

  }

 

(10) NNbp

神经网络进行后向传播,输出层->隐含层->输入层,计算每个节点的偏导数,也即误差反向传播。输入参数:

train_nnff:NNff输出值

bc_config:神经网络配置参数

bc_nn_W:神经网络当前权重参数

bc_nn_p:节点稀疏度

输出参数:

Array[BDM[Double]],每层节点的偏导数。

/**

   * NNbp是后向传播

   * 计算权重的平均偏导数

   */

  def NNbp(

    train_nnff: RDD[(NNLabel, Array[BDM[Double]])],

    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],

    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]],

    bc_nn_p: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Array[BDM[Double]] = {

    // n层偏导数:d(n)=-(y-a(n))*f‘(z)sigmoid函数f‘(z)表达式:f‘(z)=f(z)*[1-f(z)]

    // sigm: d{n} = - nn.e .* (nn.a{n} .* (1 - nn.a{n}));

    // {‘softmax‘,‘linear‘}: d{n} = - nn.e;

    valtrain_data5 = train_nnff.map { f =>

      valnn_a = f._1.nna

      valerror = f._1.error

      valdn = ArrayBuffer[BDM[Double]]()

      valnndn = bc_config.value.output_functionmatch {

        case"sigm" =>

          valfz = nn_a(bc_config.value.layer - 1)

          (error * (-1.0)) :* (fz :* (1.0 - fz))

        case"linear" =>

          error * (-1.0)

      }

      dn += nndn

      (f._1, f._2, dn)

    }

    // n-1至第2层导数:d(n)=-(w(n)*d(n+1))*f‘(z)

    valtrain_data6 = train_data5.map { f =>

      // 假设 f(z) sigmoid函数 f(z)=1/[1+e^(-z)]f‘(z)表达式,f‘(z)=f(z)*[1-f(z)]   

      // 假设 f(z) tanh f(z)=1.7159*tanh(2/3.*A) f‘(z)表达式,f‘(z)=1.7159 * 2/3 * (1 - 1/(1.7159)^2 * f(z).^2)  

      valnn_a = f._1.nna

      valdi = f._3

      valdropout = f._2

      for (i <- bc_config.value.layer - 2 to 1) {

        // f‘(z)表达式

        valnnd_act = bc_config.value.activation_functionmatch {

          case"sigm" =>

            vald_act = nn_a(i) :* (1.0 - nn_a(i))

            d_act

          case"tanh_opt" =>

            valfz2 = (1.0 - ((nn_a(i) :* nn_a(i)) * (1.0 / (1.7159 * 1.7159))))

            vald_act = fz2 * (1.7159 * (2.0 / 3.0))

            d_act

        }

        // 稀疏度惩罚误差计算:-(t/p)+(1-t)/(1-p)

        // sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))];

        valsparsityError = if (bc_config.value.nonSparsityPenalty > 0) {

          valnn_pi1 = bc_nn_p.value(i)

          valnn_pi2 = (bc_config.value.sparsityTarget / nn_pi1) * (-1.0) + (1.0 - bc_config.value.sparsityTarget) / (1.0 - nn_pi1)

          valBm1 = new BDM(nn_pi2.rows, 1, Array.fill(nn_pi2.rows * 1)(1.0))

          valsparsity = BDM.horzcat(Bm1, nn_pi2 * bc_config.value.nonSparsityPenalty)

          sparsity

        } else {

          valnn_pi1 = bc_nn_p.value(i)

          valsparsity = BDM.zeros[Double](nn_pi1.rows, nn_pi1.cols + 1)

          sparsity

        }

        // 导数:d(n)=-( w(n)*d(n+1)+ sparsityError )*f‘(z)

        // d{i} = (d{i + 1} * nn.W{i} + sparsityError) .* d_act;

        valW1 = bc_nn_W.value(i)

        valnndi1 = if (i + 1 == bc_config.value.layer - 1) {

          //in this case in d{n} there is not the bias term to be removed 

          valdi1 = di(i - 1)

          valdi2 = (di1 * W1 + sparsityError) :* nnd_act

          di2

        } else {

          // in this case in d{i} the bias term has to be removed

          valdi1 = di(i - 1)(::, 1 to -1)

          valdi2 = (di1 * W1 + sparsityError) :* nnd_act

          di2

        }

        // dropoutFraction

        valnndi2 = if (bc_config.value.dropoutFraction > 0) {

          valdropouti1 = dropout(i)

          valBm1 = new BDM(nndi1.rows: Int, 1: Int, Array.fill(nndi1.rows * 1)(1.0))

          valdropouti2 = BDM.horzcat(Bm1, dropouti1)

          nndi1 :* dropouti2

        } elsenndi1

        di += nndi2

      }

      di += BDM.zeros(1, 1)

      // 计算最终需要的偏导数值:dw(n)=(1/m)∑d(n+1)*a(n)

      //  nn.dW{i} = (d{i + 1}‘ * nn.a{i}) / size(d{i + 1}, 1);

      valdw = ArrayBuffer[BDM[Double]]()

      for (i <- 0 to bc_config.value.layer - 2) {

        valnndW = if (i + 1 == bc_config.value.layer - 1) {

          (di(bc_config.value.layer - 2 - i).t) * nn_a(i)

        } else {

          (di(bc_config.value.layer - 2 - i)(::, 1 to -1)).t * nn_a(i)

        }

        dw += nndW

      }

      (f._1, di, dw)

    }

    valtrain_data7 = train_data6.map(f => f._3)

 

    // Sample a subset (fraction miniBatchFraction) of the total data

    // compute and sum up the subgradients on this subset (this is one map-reduce)

    valinitgrad = ArrayBuffer[BDM[Double]]()

    for (i <- 0 to bc_config.value.layer - 2) {

      valinit1 = if (i + 1 == bc_config.value.layer - 1) {

        BDM.zeros[Double](bc_config.value.size(i + 1), bc_config.value.size(i) + 1)

      } else {

        BDM.zeros[Double](bc_config.value.size(i + 1), bc_config.value.size(i) + 1)

      }

      initgrad += init1

    }

    val (gradientSum, miniBatchSize) = train_data7.treeAggregate((initgrad, 0L))(

      seqOp = (c, v) => {

        // c: (grad, count), v: (grad)

        valgrad1 = c._1

        valgrad2 = v

        valsumgrad = ArrayBuffer[BDM[Double]]()

        for (i <- 0 to bc_config.value.layer - 2) {

          valBm1 = grad1(i)

          valBm2 = grad2(i)

          valBmsum = Bm1 + Bm2

          sumgrad += Bmsum

        }

        (sumgrad, c._2 + 1)

      },

      combOp = (c1, c2) => {

        // c: (grad, count)

        valgrad1 = c1._1

        valgrad2 = c2._1

        valsumgrad = ArrayBuffer[BDM[Double]]()

        for (i <- 0 to bc_config.value.layer - 2) {

          valBm1 = grad1(i)

          valBm2 = grad2(i)

          valBmsum = Bm1 + Bm2

          sumgrad += Bmsum

        }

        (sumgrad, c1._2 + c2._2)

      })

    // 求平均值

    valgradientAvg = ArrayBuffer[BDM[Double]]()

    for (i <- 0 to bc_config.value.layer - 2) {

      valBm1 = gradientSum(i)

      valBmavg = Bm1 :/ miniBatchSize.toDouble

      gradientAvg += Bmavg

    }

    gradientAvg.toArray

  }

 

(11) NNapplygrads

根据神经网络进行后向传播,计算得出的偏导数,进行权重的更新。输入参数:

train_nnbp:NNbp输出值

bc_config:神经网络配置参数

bc_nn_W:神经网络当前权重参数

bc_nn_vW:神经网络当前vW权重参数

输出参数:

Array[Array[BDM[Double]]],更新后权重。

/**

   * NNapplygrads是权重更新

   * 权重更新

   */

  def NNapplygrads(

    train_nnbp: Array[BDM[Double]],

    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],

    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]],

    bc_nn_vW: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Array[Array[BDM[Double]]] = {

    // nn = nnapplygrads(nn) returns an neural network structure with updated

    // weights and biases

    // 更新权重参数:w=w-α*[dw + λw]   

    valW_a = ArrayBuffer[BDM[Double]]()

    valvW_a = ArrayBuffer[BDM[Double]]()

    for (i <- 0 to bc_config.value.layer - 2) {

      valnndwi = if (bc_config.value.weightPenaltyL2 > 0) {

        valdwi = train_nnbp(i)

        valzeros = BDM.zeros[Double](dwi.rows, 1)

        vall2 = BDM.horzcat(zeros, dwi(::, 1 to -1))

        valdwi2 = dwi + (l2 * bc_config.value.weightPenaltyL2)

        dwi2

      } else {

        valdwi = train_nnbp(i)

        dwi

      }

      valnndwi2 = nndwi :* bc_config.value.learningRate

      valnndwi3 = if (bc_config.value.momentum > 0) {

        valvwi = bc_nn_vW.value(i)

        valdw3 = nndwi2 + (vwi * bc_config.value.momentum)

        dw3

      } else {

        nndwi2

      }

      // nn.W{i} = nn.W{i} - dW;

      W_a += (bc_nn_W.value(i) - nndwi3)

      // nn.vW{i} = nn.momentum*nn.vW{i} + dW;

      valnnvwi1 = if (bc_config.value.momentum > 0) {

        valvwi = bc_nn_vW.value(i)

        valvw3 = nndwi2 + (vwi * bc_config.value.momentum)

        vw3

      } else {

        bc_nn_vW.value(i)

      }

      vW_a += nnvwi1

    }

    Array(W_a.toArray, vW_a.toArray)

}

(12) NNeval

对样本进行前向传播计算输出层,并计算误差。

/**

   * nneval是进行前向传播并计算输出误差

   * 计算神经网络中的每个节点的输出值,并计算平均误差;

   */

  def NNeval(

    batch_xy: RDD[(BDM[Double], BDM[Double])],

    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],

    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Double = {

    // NNff是进行前向传播

    // nn = nnff(nn, batch_x, batch_y);

    valtrain_nnff = NeuralNet.NNff(batch_xy, bc_config, bc_nn_W)

    // error and loss

    // 输出误差计算

    valloss1 = train_nnff.map(f => f._1.error)

    val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(

      seqOp = (c, v) => {

        // c: (e, count), v: (m)

        vale1 = c._1

        vale2 = (v :* v).sum

        valesum = e1 + e2

        (esum, c._2 + 1)

      },

      combOp = (c1, c2) => {

        // c: (e, count)

        vale1 = c1._1

        vale2 = c2._1

        valesum = e1 + e2

        (esum, c1._2 + c2._2)

      })

    valLoss = loss2 / counte.toDouble

    Loss * 0.5

  }

(13) Nntrain

神经网络运行,训练参数。

/**

   * 运行神经网络算法.

   */

  def NNtrain(train_d: RDD[(BDM[Double], BDM[Double])], opts: Array[Double]): NeuralNetModel = {

    valsc = train_d.sparkContext

    varinitStartTime = System.currentTimeMillis()

    varinitEndTime = System.currentTimeMillis()

    // 参数配置广播配置

    varnnconfig = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,

      weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, testing,

      output_function)

    // 初始化权重

    varnn_W = NeuralNet.InitialWeight(size)

    varnn_vW = NeuralNet.InitialWeightV(size)   

    // 初始化每层的平均激活度nn.p

    // average activations (for use with sparsity)

    varnn_p = NeuralNet.InitialActiveP(size)

    // 样本数据划分:训练数据、交叉检验数据

    valvalidation = opts(2)

    valsplitW1 = Array(1.0 - validation, validation)

    valtrain_split1 = train_d.randomSplit(splitW1, System.nanoTime())

    valtrain_t = train_split1(0)

    valtrain_v = train_split1(1)

    // m:训练样本的数量

    valm = train_t.count

    // batchsize是做batch gradient时候的大小

    // 计算batch的数量

    valbatchsize = opts(0).toInt

    valnumepochs = opts(1).toInt

    valnumbatches = (m / batchsize).toInt

    varL = Array.fill(numepochs * numbatches.toInt)(0.0)

    varn = 0

    varloss_train_e = Array.fill(numepochs)(0.0)

    varloss_val_e = Array.fill(numepochs)(0.0)

    // numepochs是循环的次数

    for (i <- 1 to numepochs) {

      initStartTime = System.currentTimeMillis()

      valsplitW2 = Array.fill(numbatches)(1.0 / numbatches)

      // 根据分组权重,随机划分每组样本数据 

      valbc_config = sc.broadcast(nnconfig)

      for (l <- 1 to numbatches) {

        // 权重

        valbc_nn_W = sc.broadcast(nn_W)

        valbc_nn_vW = sc.broadcast(nn_vW)

        // 样本划分

        valtrain_split2 = train_t.randomSplit(splitW2, System.nanoTime())

        valbatch_xy1 = train_split2(l - 1)

        //        val train_split3 = train_t.filter { f => (f._1 >= batchsize * (l - 1) + 1) && (f._1 <= batchsize * (l)) }

        //        val batch_xy1 = train_split3.map(f => (f._2, f._3))

        // Add noise to input (for use in denoising autoencoder)

        // 加入noise,这是denoising autoencoder需要使用到的部分 

        // 这部分请参见《Extracting and Composing Robust Features with Denoising Autoencoders》这篇论文 

        // 具体加入的方法就是把训练样例中的一些数据调整变为0inputZeroMaskedFraction表示了调整的比例 

        //val randNoise = NeuralNet.RandMatrix(batch_x.numRows.toInt, batch_x.numCols.toInt, inputZeroMaskedFraction)

        valbatch_xy2 = if (bc_config.value.inputZeroMaskedFraction != 0) {

          NeuralNet.AddNoise(batch_xy1, bc_config.value.inputZeroMaskedFraction)

        } elsebatch_xy1

        // NNff是进行前向传播

        // nn = nnff(nn, batch_x, batch_y);

        valtrain_nnff = NeuralNet.NNff(batch_xy2, bc_config, bc_nn_W)

       

// sparsity计算,计算每层节点的平均稀疏度

        nn_p = NeuralNet.ActiveP(train_nnff, bc_config, nn_p)

        valbc_nn_p = sc.broadcast(nn_p)

 

        // NNbp是后向传播

        // nn = nnbp(nn);

        valtrain_nnbp = NeuralNet.NNbp(train_nnff, bc_config, bc_nn_W, bc_nn_p)

 

 

        // nn = NNapplygrads(nn) returns an neural network structure with updated

        // weights and biases

        // 更新权重参数:w=w-α*[dw + λw]   

        valtrain_nnapplygrads = NeuralNet.NNapplygrads(train_nnbp, bc_config, bc_nn_W, bc_nn_vW)

        nn_W = train_nnapplygrads(0)

        nn_vW = train_nnapplygrads(1)

 

        // error and loss

        // 输出误差计算

        valloss1 = train_nnff.map(f => f._1.error)

        val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(

          seqOp = (c, v) => {

            // c: (e, count), v: (m)

            vale1 = c._1

            vale2 = (v :* v).sum

            valesum = e1 + e2

            (esum, c._2 + 1)

          },

          combOp = (c1, c2) => {

            // c: (e, count)

            vale1 = c1._1

            vale2 = c2._1

            valesum = e1 + e2

            (esum, c1._2 + c2._2)

          })

        valLoss = loss2 / counte.toDouble

        L(n) = Loss * 0.5

        n = n + 1

      }

      // 计算本次迭代的训练误差及交叉检验误差

      // Full-batch train mse

      valevalconfig = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,

        weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, 1.0,

        output_function)

      loss_train_e(i - 1) = NeuralNet.NNeval(train_t, sc.broadcast(evalconfig), sc.broadcast(nn_W))

      if (validation > 0) loss_val_e(i - 1) = NeuralNet.NNeval(train_v, sc.broadcast(evalconfig), sc.broadcast(nn_W))

 

      // 更新学习因子

      // nn.learningRate = nn.learningRate * nn.scaling_learningRate;

      nnconfig = NNConfig(size, layer, activation_function, nnconfig.learningRate * nnconfig.scaling_learningRate, momentum, scaling_learningRate,

        weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, testing,

        output_function)

      initEndTime = System.currentTimeMillis()

 

      // 打印输出结果

      printf("epoch: numepochs = %d , Took = %d seconds; Full-batch train mse = %f, val mse = %f.\n", i, scala.math.ceil((initEndTime - initStartTime).toDouble / 1000).toLong, loss_train_e(i - 1), loss_val_e(i - 1))

    }

    valconfigok = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,

      weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, 1.0,

      output_function)

    new NeuralNetModel(configok, nn_W)

  }

2.2.4 NeuralNetModel解析

(1) PredictNNLabel

PredictNNLabel:自定义数据类型,存储样本预测数据,格式:实际值,预测值,误差。

/**

 * label:目标矩阵

 * features:特征矩阵

 * predict_label:预测矩阵

 * error:误差

 */

caseclass PredictNNLabel(label: BDM[Double], features: BDM[Double], predict_label: BDM[Double], error: BDM[Double]) extends Serializable

(2) predict

对样本数据进行预测。

/**

   * 返回预测结果

   返回格式:(label, feature,  predict_label, error)

   */

  def predict(dataMatrix: RDD[(BDM[Double], BDM[Double])]): RDD[PredictNNLabel] = {

    valsc = dataMatrix.sparkContext

    valbc_nn_W = sc.broadcast(weights)

    valbc_config = sc.broadcast(config)

    // NNff是进行前向传播

    // nn = nnff(nn, batch_x, batch_y);

    valtrain_nnff = NeuralNet.NNff(dataMatrix, bc_config, bc_nn_W)

    valpredict = train_nnff.map { f =>

      vallabel = f._1.label

      valerror = f._1.error

      valnnan = f._1.nna(bc_config.value.layer - 1)

      valnna1 = f._1.nna(0)(::, 1 to -1)

      PredictNNLabel(label, nna1, nnan, error)

    }

    predict

  }

(2) Loss

对预测数据计算误差。

/**

   * 计算输出误差

   * 平均误差;

   */

  def Loss(predict: RDD[PredictNNLabel]): Double = {

    valpredict1 = predict.map(f => f.error)

    // error and loss

    // 输出误差计算

    valloss1 = predict1

    val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(

      seqOp = (c, v) => {

        // c: (e, count), v: (m)

        vale1 = c._1

        vale2 = (v :* v).sum

        valesum = e1 + e2

        (esum, c._2 + 1)

      },

      combOp = (c1, c2) => {

        // c: (e, count)

        vale1 = c1._1

        vale2 = c2._1

        valesum = e1 + e2

        (esum, c1._2 + c2._2)

      })

    valLoss = loss2 / counte.toDouble

    Loss * 0.5

  }

转载请注明出处:

http://blog.csdn.net/sunbow0/

 

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.2

标签:spark   mllib   deep learning   深度学习   神经网络   

原文地址:http://blog.csdn.net/sunbow0/article/details/46126557

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!