概要 本篇主要阐述在TaskRunner中执行的task其业务逻辑是如何被调用到的,另外试图讲清楚运行着的task其输入的数据从哪获取,处理的结果返回到哪里,如何返回。 准备1. spark已经安装完毕 2. spark运行在local mode或local-cluster mode local-cluster modelocal-cluster模式也称为伪分布式,可以使用如下指令运行 MASTER=local[1,2,1024] bin/spark-shell[1,2,1024] 分别表示,executor number, corenumber和内存大小,其中内存大小不应小于默认的512M DriverProgramme的初始化过程分析初始化过程的涉及的主要源文件1. SparkContext.scala 整个初始化过程的入口 2. SparkEnv.scala 创建BlockManager, MapOutputTrackerMaster, ConnectionManager,CacheManager 3. DAGScheduler.scala 任务提交的入口,即将Job划分成各个stage的关键 4. TaskSchedulerImpl.scala 决定每个stage可以运行几个task,每个task分别在哪个executor上运行 5. SchedulerBackend 1. 最简单的单机运行模式的话,看LocalBackend.scala 2. 如果是集群模式,看源文件SparkDeploySchedulerBackend 初始化过程步骤详解步骤1: 根据初始化入参生成SparkConf,再根据SparkConf来创建SparkEnv, SparkEnv中主要包含以下关键性组件 1. BlockManager 2. MapOutputTracker 3. ShuffleFetcher 4.ConnectionManager private[spark] val env = SparkEnv.create( conf, "", conf.get("spark.driver.host"), conf.get("spark.driver.port").toInt, isDriver = true, isLocal = isLocal) SparkEnv.set(env)步骤2:创建TaskScheduler,根据Spark的运行模式来选择相应的SchedulerBackend,同时启动taskscheduler,这一步至为关键 private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master, appName) taskScheduler.start()TaskScheduler.start目的是启动相应的SchedulerBackend,并启动定时器进行检测 override def start() { backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) { logInfo("Starting speculative execution thread") import sc.env.actorSystem.dispatcher sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds, SPECULATION_INTERVAL milliseconds) { checkSpeculatableTasks() } } }步骤3:以上一步中创建的TaskScheduler实例为入参创建DAGScheduler并启动运行 @volatile private[spark] var dagScheduler = new DAGScheduler(taskScheduler) dagScheduler.start()步骤4:启动WEB UI ui.start() RDD的转换过程 还是以最简单的wordcount为例说明rdd的转换过程 sc.textFile("README.md").flatMap(line=>line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)上述一行简短的代码其实发生了很复杂的RDD转换,下面仔细解释每一步的转换过程和转换结果 步骤1:val rawFile = sc.textFile("README.md")textFile先是生成hadoopRDD,然后再通过map操作生成MappedRDD,如果在spark-shell中执行上述语句,得到的结果可以证明所做的分析 scala> sc.textFile("README.md")14/04/23 13:11:48 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes14/04/23 13:11:48 INFO MemoryStore: ensureFreeSpace(119741) called with curMem=0, maxMem=31138775014/04/23 13:11:48 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 116.9 KB, free 296.8 MB)14/04/2313:11:48 DEBUG BlockManager: Put block broadcast_0 locally took 277 ms14/04/23 13:11:48 DEBUG BlockManager: Put for block broadcast_0 without replication took 281 msres0: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at :13 步骤2: valsplittedText = rawFile.flatMap(line => line.split(" ")) flatMap将原来的MappedRDD转换成为FlatMappedRDD def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = new FlatMappedRDD(this, sc.clean(f)) 步骤3:val wordCount = splittedText.map(word => (word, 1)) 利用word生成相应的键值对,上一步的FlatMappedRDD被转换成为MappedRDD 步骤4:val reduceJob = wordCount.reduceByKey(_ + _),这一步最复杂步骤2,3中使用到的operation全部定义在RDD.scala中,而这里使用到的reduceByKey却在RDD.scala中见不到踪迹。reduceByKey的定义出现在源文件PairRDDFunctions.scala 细心的你一定会问reduceByKey不是MappedRDD的属性和方法啊,怎么能被MappedRDD调用呢?其实这背后发生了一个隐式的转换,该转换将MappedRDD转换成为PairRDDFunctions implicit def rddToPairRDDFunctions[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]) = newPairRDDFunctions(rdd)这种隐式的转换是scala的一个语法特征,如果想知道的更多,请用关键字"scalaimplicit method"进行查询,会有不少的文章对此进行详尽的介绍。 接下来再看一看reduceByKey的定义 def reduceByKey(func: (V, V) => V): RDD[(K, V)] = { reduceByKey(defaultPartitioner(self), func) } def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = { combineByKey[V]((v: V) => v, func, func, partitioner) } def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true, serializerClass: String = null): RDD[(K, C)] = { if (getKeyClass().isArray) { if (mapSideCombine) { throw new SparkException("Cannot use map-side combining with array keys.") } if (partitioner.isInstanceOf[HashPartitioner]) { throw new SparkException("Default partitioner cannot partition array keys.") } } val aggregator = new Aggregator[K, V, C](createCombiner, mergeValue, mergeCombiners) if (self.partitioner == Some(partitioner)) { self.mapPartitionsWithContext((context, iter) => { newInterruptibleIterator(context, aggregator.combineValuesByKey(iter, context)) }, preservesPartitioning = true) } else if (mapSideCombine) { val combined = self.mapPartitionsWithContext((context, iter) => { aggregator.combineValuesByKey(iter, context) }, preservesPartitioning = true) valpartitioned = new ShuffledRDD[K, C, (K, C)](combined, partitioner) .setSerializer(serializerClass) partitioned.mapPartitionsWithContext((context, iter) => { new InterruptibleIterator(context, aggregator.combineCombinersByKey(iter, context)) }, preservesPartitioning = true) } else { // Don‘t apply map-side combiner. valvalues = new ShuffledRDD[K, V, (K, V)](self, partitioner).setSerializer(serializerClass) values.mapPartitionsWithContext((context, iter) => { newInterruptibleIterator(context, aggregator.combineValuesByKey(iter, context)) }, preservesPartitioning = true) } }reduceByKey最终会调用combineByKey, 在这个函数中PairedRDDFunctions会被转换成为ShuffleRDD,当调用mapPartitionsWithContext之后,shuffleRDD被转换成为MapPartitionsRDD Log输出能证明我们的分析 res1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[8] at reduceByKey at :13 RDD转换小结 小结一下整个RDD转换过程 HadoopRDD->MappedRDD->FlatMappedRDD->MappedRDD->PairRDDFunctions->ShuffleRDD->MapPartitionsRDD 整个转换过程好长啊,这一切的转换都发生在任务提交之前。 运行过程分析数据集操作分类在对任务运行过程中的函数调用关系进行分析之前,我们也来探讨一个偏理论的东西,作用于RDD之上的Transformantion为什么会是这个样子? 对这个问题的解答和数学搭上关系了,从理论抽象的角度来说,任务处理都可归结为“input->processing->output"。input和output对应于数据集dataset. 在此基础上作一下简单的分类 1. one-one 一个dataset在转换之后还是一个dataset,而且dataset的size不变,如map 2. one-one 一个dataset在转换之后还是一个dataset,但size发生更改,这种更改有两种可能:扩大或缩小,如flatMap是size增大的操作,而subtract是size变小的操作 3. many-one 多个dataset合并为一个dataset,如combine, join 4. one-many 一个dataset分裂为多个dataset, 如groupBy Task运行期的函数调用task的提交过程参考本系列中的第二篇文章。本节主要讲解当task在运行期间是如何一步步调用到作用于RDD上的各个operation
或许当看到RDD.compute函数定义时,还是觉着f没有被调用,以MappedRDD的compute定义为例 override def compute(split: Partition, context: TaskContext) = firstParent[T].iterator(split, context).map(f)注意,这里最容易产生错觉的地方就是map函数,这里的map不是RDD中的map,而是scala中定义的iterator的成员函数map, 请自行参考http://www.scala-lang.org/api/2. ... collection.Iterator 堆栈输出 80 at org.apache.spark.rdd.HadoopRDD.getJobConf(HadoopRDD.scala:111) 81 at org.apache.spark.rdd.HadoopRDD$$anon$1.(HadoopRDD.scala:154) 82 at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:149) 83 at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:64) 84 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) 85 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) 86 at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) 87 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) 88 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) 89 at org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33) 90 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) 91 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) 92 at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) 93 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) 94 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) 95 at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34) 96 at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) 97 at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) 98 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161) 99 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)100 at org.apache.spark.scheduler.Task.run(Task.scala:53)101 at org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:211)ResultTaskcompute的计算过程对于ShuffleMapTask比较复杂,绕的圈圈比较多,对于ResultTask就直接许多。 override def runTask(context: TaskContext): U = { metrics = Some(context.taskMetrics) try{ func(context, rdd.iterator(split, context)) } finally { context.executeOnCompleteCallbacks() } } 计算结果的传递 上面的分析知道,wordcount这个job在最终提交之后,被DAGScheduler分为两个stage,第一个Stage是shuffleMapTask,第二个Stage是ResultTask. 那么ShuffleMapTask的计算结果是如何被ResultTask取得的呢?这个过程简述如下 1. ShffuleMapTask将计算的状态(注意不是具体的数据)包装为MapStatus返回给DAGScheduler 2. DAGScheduler将MapStatus保存到MapOutputTrackerMaster中 3. ResultTask在执行到ShuffleRDD时会调用BlockStoreShuffleFetcher的fetch方法去获取数据 1. 第一件事就是咨询MapOutputTrackerMaster所要取的数据的location 2. 根据返回的结果调用BlockManager.getMultiple获取真正的数据 BlockStoreShuffleFetcher的fetch函数伪码 val blockManager = SparkEnv.get.blockManager val startTime = System.currentTimeMillis val statuses = SparkEnv.get.mapOutputTracker.getServerStatuses(shuffleId, reduceId) logDebug("Fetching map output location for shuffle %d, reduce %d took %d ms".format( shuffleId, reduceId, System.currentTimeMillis - startTime)) val blockFetcherItr = blockManager.getMultiple(blocksByAddress, serializer) val itr = blockFetcherItr.flatMap(unpackBlock)注意上述代码中的getServerStatuses及getMultiple,一个是询问数据的位置,一个是去获取真正的数据。 |
Apache Spark源码走读之3 -- Task运行期之函数调用关系分析
原文地址:http://crxy2013.blog.51cto.com/9922445/1657229