码迷,mamicode.com
首页 > 编程语言 > 详细

算法练习:两数之和

时间:2015-06-06 16:41:36      阅读:162      评论:0      收藏:0      [点我收藏+]

标签:

题目:给定一个整型数组,是否能找出两个数使其和为指定的某个值?注:整型数组中不存在相同的数。

一、解题方法

1、暴力破解法(时间复杂度O(n^2) )

这是最容易想到的一种方法,即使用两层循环,从数组里取出一个数,然后在此数之后部分找出另外一个数,计算两数之和,判断是否等于指定值。如下:

//直观的办法,使用两个循环
bool IsExistSumOfTwoNum( int nArray[], int nCount, int nSum )
{
	bool bRet = false;
	for ( int i = 0; i < nCount - 1; ++i )
	{
		for ( int j = i + 1; j < nCount; ++j )
		{
			if ( ( nArray[i] + nArray[j] ) == nSum )
			{
				bRet = true;
				break;
			}
		}
	}
	
	return bRet;	
}

此种方法的的时间复杂度为O(n^2),那么能否降低此复杂度呢?答案是可以的,请看第二种方法。

 

2、排序加首尾指针(时间复杂度O(nlogn) 

先对数组进行从小到大的排序,然后设置首尾指针,从首尾两端开始移动,一次移动一端的指针,直至两指针相遇或者两指针指向的数的和为指定的值。

假设两指针为ij,其中i < j,如果a[i]a[j]之和大于指定值,那么要找的两个数一定在j的左侧,如果a[i]a[j]之和小于指定值,那么要找的两个数一定在i的右侧。可用反证法证明此结论的正确性,证明略。

bool IsExistSumOfTwoNum( int nArray[], int nCount, int nSum )
{
	//从小到大排序
	std::sort( nArray, nArray+nCount, std::less<int>() );

	//首尾指示
	int i = 0; 
	int j = nCount - 1;

	bool bRet = false;
	while( i < j )
	{
		if ( ( nArray[i] + nArray[j] ) == nSum )
		{
			bRet = true;
			break;
		}
		else if ( ( nArray[i] + nArray[j] ) > nSum  )
		{
			--j;
		}
		else
		{
			++i;
		}
	}

	return bRet;	
}

此种算法中,一开始有一个排序,最好的排序的时间复杂度可为O(nlogn),比如堆排序、归并排序、快速排序。While循环至多扫描一遍数组,所以其时间表复杂度为O(n)。由此可得,最终的时间复杂度为O(nlogn)。那么能否再降低时间复杂度呢?答案还是可以的,但是这时需要一个额外的存储空间,请看第三种方法。

 

3、利用哈希表(时间复杂度O(n) 

将复杂度为O(nlogn)降低至O(n),首先想到的是哈希表,因为哈希表的查找时间复杂度为O(n)

扫描一遍数组,将其数组各个值保存至哈希表中,比如键值:<数组值--索引>。然后再次开始从头扫描数组,检查指定值与当前值的差值是否在哈希表中(特殊情况:如果遇到差值为当前值时,那么不应返回,因为数组中的值是不相同的)。

程序代码实现说明:程序中使用c++标准库中的set代替哈希表,因为标准库中还未收录哈希表相关部分。此处若需要两数的索引信息,可以考虑使用map。因为setmap内部使用的是红黑树数据结构,查找效率高,具体的复杂度,我还没好好研究,呵呵。希望此处用set代替哈希表,不要引起误会,姑且将它理解为查找复杂度为常数时间的东西吧。

 

//使用额外的存储空间
bool IsExistSumOfTwoNum( int nArray[], int nCount, int nSum )
{
	//打描一遍数组,将值存放于哈希表中
	//(注:此处使用set代替下哈希表,它内部实现说是红黑树,还没仔细研究过,呵)
	std::set<int> siSetTemp;
	int i = 0;
	bool bRet = false;
	for ( i = 0; i < nCount; ++i )
	{
		siSetTemp.insert( nArray[i] );
	}

	for ( i = 0; i < nCount; ++i )
	{
		std::set<int>::iterator it = siSetTemp.find( nSum - nArray[i] );
		if ( it != siSetTemp.end() && (nSum != 2 * nArray[i] ) )
		{
			bRet = true;
			break;
		}
	}

	return bRet;
 		
}


此种算法中,哈希表的查找是常数时间,所以时间复杂度为On),空间复杂度为

On),即数组大小On)。

 

二、扩展问题

如果要返回其中所有的可能或者数组里面存在相同的数,那么应当怎么解决呢?相信有了以上的知识,这个解决起来也不难。一个是开辟一个保存结果的数组,搜索完整个数组空间;另外一个无非就是让哈希表中多存放点数据。



系列文章说明:
1.本系列文章[算法练习],仅仅是本人学习过程的一个记录以及自我激励,没有什么说教的意思。如果能给读者带来些许知识及感悟,那是我的荣幸。
2.本系列文章是本人学习陈东锋老师《进军硅谷,程序员面试揭秘》一书而写的一些心得体会,文章大多数观点均来自此书,特此说明!
3.文章之中,难免有诸多的错误与不足,欢迎读者批评指正,谢谢.


作者:山丘儿
转载请标明出处,谢谢。原文地址:http://blog.csdn.net/s634772208/article/details/46388789


算法练习:两数之和

标签:

原文地址:http://blog.csdn.net/s634772208/article/details/46388789

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!