标签:
http://blog.csdn.net/feixiaoxing/article/details/6844723
无论是数据库,还是普通的ERP系统,查找功能数据处理的一个基本功能。数据查找并不复杂,但是如何实现数据又快又好地查找呢?前人在实践中积累的一些方法,值得我们好好学些一下。我们假定查找的数据唯一存在,数组中没有重复的数据存在。
(1) 普通的数据查找
设想有一个1M的数据,我们如何在里面找到我们想要的那个数据。此时数据本身没有特征,所以我们需要的那个数据可能出现在数组的各个位置,可能在数据的开头位置,也可能在数据的结束位置。这种性质要求我们必须对数据进行遍历之后才能获取到对应的数据。
int find(int array[], int length, int value) { if(NULL == array || 0 == length) return -1; for(int index = 0; index < length; index++){ if(value == array[index]) return index; } return -1; }
分析:
由于我们不清楚这个数据判断究竟需要多少次。但是,我们知道,这样一个数据查找最少需要1次,那么最多需要n次,平均下来可以看成是(1+n)/2,差不多是n的一半。我们把这种比较次数和n成正比的算法复杂度记为o(n)。
(2)上面的数据没有任何特征,这导致我们的数据排列地杂乱无章。试想一下,如果数据排列地非常整齐,那结果会是什么样的呢?就像在生活中,如果平时不注意收拾整齐,那么找东西的时候非常麻烦,效率很低;但是一旦东西放的位置固定下来,所有东西都归类放好,那么结果就不一样了,我们就会形成思维定势,这样查找东西的效率就会非常高。那么,对一个有序的数组,我们应该怎么查找呢?二分法就是最好的方法。
int binary_sort(int array[], int length, int value) { if(NULL == array || 0 == length) return -1; int start = 0; int end = length -1; while(start <= end){ int middle = start + ((end - start) >> 1); if(value == array[middle]) return middle; else if(value > array[middle]){ start = middle + 1; }else{ end = middle -1; } } return -1; }
分析:
上面我们说到普通的数据查找算法复杂度是o(n)。那么我们可以用上面一样的方法判断一下算法复杂度。这种方法最少是1次,那么最多需要多少次呢?我们发现最多需要log(n+1)/log(2)即可。大家可以找个例子自己算一下,比如说7个数据,我们发现最多3次;如果是15个数据呢,那么最多4次;以此类推,详细的论证方法可以在《算法导论》、《计算机编程艺术》中找到。明显,这种数据查找的效率要比前面的查找方法高很多。
(3) 上面的查找是建立在连续内存基础之上的,那么如果是指针类型的数据呢?怎么办呢?那么就需要引入排序二叉树了。
排序二叉树的定义很简单:
(1)非叶子节点至少一边的分支非NULL;
(2)叶子节点左右分支都为NULL;
(3)每一个节点记录一个数据,同时左分支的数据都小于右分支的数据。
可以看看下面的定义:
typedef struct _NODE { int data; struct _NODE* left; struct _NODE* right; }NODE;
那么查找呢,那就更简单了。
const NODE* find_data(const NODE* pNode, int data){ if(NULL == pNode) return NULL; if(data == pNode->data) return pNode; else if(data < pNode->data) return find_data(pNode->left, data); else return find_data(pNode->right, data); }
(4)同样,我们看到(2)、(3)都是建立在完全排序的基础之上,那么有没有建立在折中基础之上的查找呢?有,那就是哈希表。
哈希表的定义如下:
1)每个数据按照某种聚类运算归到某一大类,然后所有数据链成一个链表;
2)所有链表的头指针形成一个指针数组。
这种方法因为不需要完整排序,所以在处理中等规模数据的时候很有效。其中节点的定义如下:
typedef struct _LINK_NODE { int data; struct _LINK_NODE* next; }LINK_NODE;
那么hash表下面的数据怎么查找呢?
LINK_NODE* hash_find(LINK_NODE* array[], int mod, int data) { int index = data % mod; if(NULL == array[index]) return NULL; LINK_NODE* pLinkNode = array[index]; while(pLinkNode){ if(data == pLinkNode->data) return pLinkNode; pLinkNode = pLinkNode->next; } return pLinkNode; }
分析:
hash表因为不需要排序,只进行简单的归类,在数据查找的时候特别方便。查找时间的大小取决于mod的大小。mod越小,那么hash查找就越接近于普通查找;那么hash越大呢,那么hash一次查找成功的概率就大大增加。
标签:
原文地址:http://www.cnblogs.com/Anita9002/p/4561351.html