(一):进程创建
linux不同于其他操作系统,linux在进程的创建的时候,将进程的创建和执行程序分成了两个函数,fork()和exec()。进程在创建的过程中,首先通过fork()函数拷贝一份当前进程来创建一个子进程。子进程和父进程的区别仅仅在于PID,PPID(父进程的进程号,子进程将其设置为被拷贝进程的进程号)和某些资源以及统计量(被挂起的信号等)。exec()函数负责执行负责执行可执行文件并将其载入地址空间开始运行。
1:写时拷贝
在传统的fotk()函数中,直接将进程的所有的资源复制给新创建的进程,这样有一些不好的地方,首先,这样会使得进程创建缓慢,其次就是有很多没有必要继承的数据被无辜继承下来,后来还需要修改,这样就会造成效率低下。
现在有了写时拷贝(copy-on-write),这是一种推迟甚至免除拷贝数据的技术,在进程被创建的时候,内核并不是复制整个进程地址空间,而是让父进程和子进程共享同一个拷贝。只有在需要写入的时候,数据才会被复制。
2:fork()
Linux通过clone()系统调用实现fork()。这个调用通过一系列的参数标志来指明父,子进程需要共享的资源。其中fork(),vfork(),_clone()都根据各自需要的参数标志去调用clone(),然后clone()在去调用dk_fork()。最后do_fork()调用copy_process()让进程开始运行。下面我们来看一下该调用过程。其中基本上大部分定义在 kernel/fork.c中。
我们首先看一下copy_process()函数:
/*
* This creates a new process as a copy of the old one,
* but does not actually start it yet.
*
* 该方法会创建一个旧进程的拷贝,但是他并没有真实运行
*
* It copies the registers, and all the appropriate
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*
* 他会复制寄存器的内容,以及进程环境所有可能的部分。
*
*/
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr,
int pid)
{
int retval;
struct task_struct *p = NULL;
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*
* 线程组一定要共享信号,并且分离的线程也仅仅能在线程组中运行。
*
*/
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
retval = security_task_create(clone_flags);
if (retval)
goto fork_out;
retval = -ENOMEM;
/*
* 使用dump_task_struct()为新进程创建一个内核栈,thread_info结构和task_struct,这些值
* 与当前进程相同,此时,子进程和父进程的描述符是完全一样的。
*
*/
p = dup_task_struct(current);
/*
* 创建完成之后,检查新创建进程的正确性,以及当前拥有的进程数目没有
* 超过给他分配的资源的限制。
*
* 子进程开始着手将自己与父进程区别开来,进程描述符中的很多成员需要被清0
* 或被设置为初始值。
*/
if (!p)
goto fork_out;
#ifdef CONFIG_TRACE_IRQFLAGS
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >=
p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
p->user != &root_user)
goto bad_fork_free;
}
atomic_inc(&p->user->__count);
atomic_inc(&p->user->processes);
get_group_info(p->group_info);
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn‘t hurt, the check is only there
* to stop root fork bombs.
*/
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
if (p->binfmt && !try_module_get(p->binfmt->module))
goto bad_fork_cleanup_put_domain;
p->did_exec = 0;
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
/*
* copy_flags()函数被调用,来更新task_struct的flags成员。表明进程
* 是否拥有超级权限的PF_SUPERPRIV标志被清0,表明进程还没有调用exec()
* 函数的PF_FORKNOEXEC标志被设置
*/
copy_flags(clone_flags, p);
/*
* 由于之前函数刚开始的时候,调用函数alloc_pid()函数已经为该进程
* 分配了pid,在这里只需设置新创建进程的pid即可。
*
*/
p->pid = pid;
retval = -EFAULT;
// 根据传递的参数标志,copy_process()拷贝或共享打开的文件,文件系统信息,
// 信号处理函数,进程地址空间和命名空间等。
if (clone_flags & CLONE_PARENT_SETTID)
if (put_user(p->pid, parent_tidptr))
goto bad_fork_cleanup_delays_binfmt;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock);
clear_tsk_thread_flag(p, TIF_SIGPENDING);
init_sigpending(&p->pending);
p->utime = cputime_zero;
p->stime = cputime_zero;
p->sched_time = 0;
p->rchar = 0; /* I/O counter: bytes read */
p->wchar = 0; /* I/O counter: bytes written */
p->syscr = 0; /* I/O counter: read syscalls */
p->syscw = 0; /* I/O counter: write syscalls */
acct_clear_integrals(p);
p->it_virt_expires = cputime_zero;
p->it_prof_expires = cputime_zero;
p->it_sched_expires = 0;
INIT_LIST_HEAD(&p->cpu_timers[0]);
INIT_LIST_HEAD(&p->cpu_timers[1]);
INIT_LIST_HEAD(&p->cpu_timers[2]);
p->lock_depth = -1; /* -1 = no lock */
do_posix_clock_monotonic_gettime(&p->start_time);
p->security = NULL;
p->io_context = NULL;
p->io_wait = NULL;
p->audit_context = NULL;
cpuset_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_copy(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_cpuset;
}
mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0;
p->hardirqs_enabled = 0;
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
#endif
rt_mutex_init_task(p);
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;
if ((retval = security_task_alloc(p)))
goto bad_fork_cleanup_policy;
if ((retval = audit_alloc(p)))
goto bad_fork_cleanup_security;
/* copy all the process information */
if ((retval = copy_semundo(clone_flags, p)))
goto bad_fork_cleanup_audit;
if ((retval = copy_files(clone_flags, p)))
goto bad_fork_cleanup_semundo;
if ((retval = copy_fs(clone_flags, p)))
goto bad_fork_cleanup_files;
if ((retval = copy_sighand(clone_flags, p)))
goto bad_fork_cleanup_fs;
if ((retval = copy_signal(clone_flags, p)))
goto bad_fork_cleanup_sighand;
if ((retval = copy_mm(clone_flags, p)))
goto bad_fork_cleanup_signal;
if ((retval = copy_keys(clone_flags, p)))
goto bad_fork_cleanup_mm;
if ((retval = copy_namespace(clone_flags, p)))
goto bad_fork_cleanup_keys;
retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
if (retval)
goto bad_fork_cleanup_namespace;
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?
*/
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
p->robust_list = NULL;
#ifdef CONFIG_COMPAT
p->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&p->pi_state_list);
p->pi_state_cache = NULL;
/*
* sigaltstack should be cleared when sharing the same VM
*/
if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
p->sas_ss_sp = p->sas_ss_size = 0;
/*
* Syscall tracing should be turned off in the child regardless
* of CLONE_PTRACE.
*/
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
/* Our parent execution domain becomes current domain
These must match for thread signalling to apply */
p->parent_exec_id = p->self_exec_id;
/* ok, now we should be set up.. */
p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
p->pdeath_signal = 0;
p->exit_state = 0;
/*
* Ok, make it visible to the rest of the system.
* We dont wake it up yet.
*/
p->group_leader = p;
INIT_LIST_HEAD(&p->thread_group);
INIT_LIST_HEAD(&p->ptrace_children);
INIT_LIST_HEAD(&p->ptrace_list);
/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p, clone_flags);
/* Need tasklist lock for parent etc handling! */
write_lock_irq(&tasklist_lock);
/*
* The task hasn‘t been attached yet, so its cpus_allowed mask will
* not be changed, nor will its assigned CPU.
*
* The cpus_allowed mask of the parent may have changed after it was
* copied first time - so re-copy it here, then check the child‘s CPU
* to ensure it is on a valid CPU (and if not, just force it back to
* parent‘s CPU). This avoids alot of nasty races.
*/
p->cpus_allowed = current->cpus_allowed;
if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
!cpu_online(task_cpu(p))))
set_task_cpu(p, smp_processor_id());
/* CLONE_PARENT re-uses the old parent */
if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
p->real_parent = current->real_parent;
else
p->real_parent = current;
p->parent = p->real_parent;
spin_lock(¤t->sighand->siglock);
/*
* Process group and session signals need to be delivered to just the
* parent before the fork or both the parent and the child after the
* fork. Restart if a signal comes in before we add the new process to
* it‘s process group.
* A fatal signal pending means that current will exit, so the new
* thread can‘t slip out of an OOM kill (or normal SIGKILL).
*/
recalc_sigpending();
if (signal_pending(current)) {
spin_unlock(¤t->sighand->siglock);
write_unlock_irq(&tasklist_lock);
retval = -ERESTARTNOINTR;
goto bad_fork_cleanup_namespace;
}
if (clone_flags & CLONE_THREAD) {
p->group_leader = current->group_leader;
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
if (!cputime_eq(current->signal->it_virt_expires,
cputime_zero) ||
!cputime_eq(current->signal->it_prof_expires,
cputime_zero) ||
current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
!list_empty(¤t->signal->cpu_timers[0]) ||
!list_empty(¤t->signal->cpu_timers[1]) ||
!list_empty(¤t->signal->cpu_timers[2])) {
/*
* Have child wake up on its first tick to check
* for process CPU timers.
*/
p->it_prof_expires = jiffies_to_cputime(1);
}
}
/*
* inherit ioprioretval
*/
p->ioprio = current->ioprio;
if (likely(p->pid)) {
add_parent(p);
if (unlikely(p->ptrace & PT_PTRACED))
__ptrace_link(p, current->parent);
if (thread_group_leader(p)) {
p->signal->tty = current->signal->tty;
p->signal->pgrp = process_group(current);
p->signal->session = current->signal->session;
attach_pid(p, PIDTYPE_PGID, process_group(p));
attach_pid(p, PIDTYPE_SID, p->signal->session);
list_add_tail_rcu(&p->tasks, &init_task.tasks);
__get_cpu_var(process_counts)++;
}
attach_pid(p, PIDTYPE_PID, p->pid);
nr_threads++;
}
total_forks++;
spin_unlock(¤t->sighand->siglock);
write_unlock_irq(&tasklist_lock);
proc_fork_connector(p);
//最后返回新创建进程描述符的指针
return p;
bad_fork_cleanup_namespace:
exit_namespace(p);
bad_fork_cleanup_keys:
exit_keys(p);
bad_fork_cleanup_mm:
if (p->mm)
mmput(p->mm);
bad_fork_cleanup_signal:
cleanup_signal(p);
bad_fork_cleanup_sighand:
__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
exit_fs(p); /* blocking */
bad_fork_cleanup_files:
exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
exit_sem(p);
bad_fork_cleanup_audit:
audit_free(p);
bad_fork_cleanup_security:
security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
mpol_free(p->mempolicy);
bad_fork_cleanup_cpuset:
#endif
cpuset_exit(p);
bad_fork_cleanup_delays_binfmt:
delayacct_tsk_free(p);
if (p->binfmt)
module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
put_group_info(p->group_info);
atomic_dec(&p->user->processes);
free_uid(p->user);
bad_fork_free:
free_task(p);
fork_out:
return ERR_PTR(retval);
}
这样,我们来梳理一下copy_process()的工作流程。
根据代码,当该函数被调用的时候,首先会调用alloc_pid()函数分配一个新的pid。接着进程下面的操作:
1:调用dump_task_struct()函数为为新进程创建一个内核栈,thread_info结构和task_struct,这些值和当前进程的值相同。此时,子进程和父进程的进程描述符是完全一样的。
2:接着,程序会检查新创建的子进程的正确性,并且检查当前用户所拥有的进程数目没有超过给他分配的资源限制。
3:子进程着手将自己与父进程去被开来。进程描述符内的很多成员都要被清0或者是设置为初始值。
4:子进程的状态被设置为TASK_UNINTERRUPTIBLE,来保证不会投入运行
5:调用copy_flags()来更新task_struct的flags成员。表示用户是否拥有超级权限的标志PF_SUPERPRIV被清0.
6:设置新进程的pid
7:根据clone()传递的参数标志,copy_process()拷贝或共享打开的文件,文件系统信息,信号处理函数,进程地址空间和命名空间等。
8:最后,返回一个指向子进程的指针。
原文地址:http://blog.csdn.net/hongbochen1223/article/details/46523291