初学opengl ES,每一个教你在屏幕上贴图的opengl版hello world都有这么两数组:
static final float COORD[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
-1.0f, 1.0f,
1.0f, 1.0f,
};
static final float TEXTURE_COORD[] = {
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
};
但是几乎都不解释,所以我学的时候都不明白这些点为什么要这么写,前后顺序有没有什么规律。于是各种查资料试验,终于搞懂了。
PS:本人学opengl es主要是为了2D贴图,所以不涉及Z轴
如图,图一是opengl的世界坐标系,这个基本没啥问题,主要是很多教程说纹理坐标是左下原点。实践得出在Android上应该是最右边的图那样,以左上为原点。
个人猜测纹理吧其实就是一组颜色点组成的数组,Android由于UI坐标是以左上为原点,所以把数组里颜色点的存储顺序改了一下,于是坐标系就不一样了。
public class Filter {
protected static final String VERTEX_SHADER = "" +
"attribute vec4 position;\n" +
"attribute vec4 inputTextureCoordinate;\n" +
" \n" +
"varying vec2 textureCoordinate;\n" +
" \n" +
"void main()\n" +
"{\n" +
" gl_Position = position;\n" +
" textureCoordinate = inputTextureCoordinate.xy;\n" +
"}";
protected static final String FRAGMENT_SHADER = "" +
"varying highp vec2 textureCoordinate;\n" +
" \n" +
"uniform sampler2D inputImageTexture;\n" +
" \n" +
"void main()\n" +
"{\n" +
" gl_FragColor = texture2D(inputImageTexture, textureCoordinate);\n" +
"}";
static final float COORD1[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
-1.0f, 1.0f,
1.0f, 1.0f,
};
static final float TEXTURE_COORD1[] = {
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
};
static final float COORD2[] = {
-1.0f, 1.0f,
-1.0f, -1.0f,
1.0f, 1.0f,
1.0f, -1.0f,
};
static final float TEXTURE_COORD2[] = {
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f,
1.0f, 1.0f,
};
static final float COORD3[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD3[] = {
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
};
static final float COORD4[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD4[] = {
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
};
static final float COORD_REVERSE[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD_REVERSE[] = {
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 0.0f,
0.0f, 1.0f,
};
static final float COORD_FLIP[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD_FLIP[] = {
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
1.0f, 0.0f,
};
private String mVertexShader;
private String mFragmentShader;
private FloatBuffer mCubeBuffer;
private FloatBuffer mTextureCubeBuffer;
protected int mProgId;
protected int mAttribPosition;
protected int mAttribTexCoord;
protected int mUniformTexture;
public Filter() {
this(VERTEX_SHADER, FRAGMENT_SHADER);
}
public Filter(String vertexShader, String fragmentShader) {
mVertexShader = vertexShader;
mFragmentShader = fragmentShader;
}
public void init() {
loadVertex();
initShader();
GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA);
}
public void loadVertex() {
float[] coord = COORD1;
float[] texture_coord = TEXTURE_COORD1;
mCubeBuffer = ByteBuffer.allocateDirect(coord.length * 4)
.order(ByteOrder.nativeOrder())
.asFloatBuffer();
mCubeBuffer.put(coord).position(0);
mTextureCubeBuffer = ByteBuffer.allocateDirect(texture_coord.length * 4)
.order(ByteOrder.nativeOrder())
.asFloatBuffer();
mTextureCubeBuffer.put(texture_coord).position(0);
}
public void initShader() {
mProgId = GLHelper.loadProgram(mVertexShader, mFragmentShader);
mAttribPosition = GLES20.glGetAttribLocation(mProgId, "position");
mUniformTexture = GLES20.glGetUniformLocation(mProgId, "inputImageTexture");
mAttribTexCoord = GLES20.glGetAttribLocation(mProgId,
"inputTextureCoordinate");
}
public void drawFrame(int glTextureId) {
if (!GLES20.glIsProgram(mProgId)) {
initShader();
}
GLES20.glUseProgram(mProgId);
mCubeBuffer.position(0);
GLES20.glVertexAttribPointer(mAttribPosition, 2, GLES20.GL_FLOAT, false, 0, mCubeBuffer);
GLES20.glEnableVertexAttribArray(mAttribPosition);
mTextureCubeBuffer.position(0);
GLES20.glVertexAttribPointer(mAttribTexCoord, 2, GLES20.GL_FLOAT, false, 0,
mTextureCubeBuffer);
GLES20.glEnableVertexAttribArray(mAttribTexCoord);
if (glTextureId != GLHelper.NO_TEXTURE) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, glTextureId);
GLES20.glUniform1i(mUniformTexture, 0);
}
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glDisableVertexAttribArray(mAttribPosition);
GLES20.glDisableVertexAttribArray(mAttribTexCoord);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0);
GLES20.glDisable(GLES20.GL_BLEND);
}
}
其中
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
由于openglES本身就是opengl的缩略版,所以能直接画的形状就只有三角形,别的复杂的都要由三角形来组成。GLES20.GL_TRIANGLE_STRIP指的就是一种三角形的绘制模式,对应这个顶点数组:
static final float COORD[] = {
-1.0f, -1.0f, //1
1.0f, -1.0f, //2
-1.0f, 1.0f, //3
1.0f, 1.0f, //4
};
实际绘制的就是顶点1,2,3组成的三角形和顶点2,3,4组成的三角形合并成的一个矩形,如果有更多点,依次类推(比如有5个点,就是1,2,3 2,3,4 3,4,5三个三角形组成的图案)。如下图:
纹理的点和世界坐标的点之间是对应的:
static final float COORD1[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
-1.0f, 1.0f,
1.0f, 1.0f,
};
static final float TEXTURE_COORD1[] = {
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
};
显示结果如图:
如图中箭头,opengl会把纹理中颜色顶点绘到对应的世界坐标顶点上,中间的点则按一定的规律取个平均值什么的,所以可见实际显示的图被上下拉伸了,因为原图是1:1,而在该程序里
GLES20.glViewport(0, 0, width, height);
赋予的显示区域是高大于宽的(这里涉及到opengl世界坐标和屏幕坐标的映射,和本文主旨关系不大就不多说了)。
其实也就是只要世界坐标和纹理坐标数组里的点能够对的上,顺序不是问题
代码里的四组坐标的显示效果都是一样的:
static final float COORD1[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
-1.0f, 1.0f,
1.0f, 1.0f,
};
static final float TEXTURE_COORD1[] = {
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
};
static final float COORD2[] = {
-1.0f, 1.0f,
-1.0f, -1.0f,
1.0f, 1.0f,
1.0f, -1.0f,
};
static final float TEXTURE_COORD2[] = {
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f,
1.0f, 1.0f,
};
static final float COORD3[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD3[] = {
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
};
static final float COORD4[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD4[] = {
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
};
不信的可以在这里都替换了试试:
float[] coord = COORD1;
float[] texture_coord = TEXTURE_COORD1;
为了加深理解,甚至可以玩点花样出来,比如这样
static final float COORD_REVERSE[] = {
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
-1.0f, 1.0f,
};
static final float TEXTURE_COORD_REVERSE[] = {
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 0.0f,
0.0f, 1.0f,
};
。。。。。。。。。。。。。。。。
float[] coord = COORD_REVERSE;
float[] texture_coord = TEXTURE_COORD_REVERSE;
结果如下图:
对Android opengl ES世界坐标系和纹理坐标系的理解
原文地址:http://blog.csdn.net/yellowcath/article/details/46534559