标签:
分析:
小Ho:这种简单的谜题就交给我吧!
小Hi:真的没问题么?
<10分钟过去>
小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了。
小Hi:哎,我就知道你会遇到问题。
小Ho:小Hi快来帮帮我!
小Hi:好了,好了。让我们一起来解决这个问题。
<小Hi思考了一下>
小Hi:原来是这样。。。小Ho你仔细观察这个例子:
因为相连的两个数字总是相同的,不妨我们只写一次,那么这个例子可以写成:3-2-4-3-5-1。6个数字刚好有5个间隙,每个间隙两边的数字由恰好对应了一块骨牌。
如果我们将每一个数字看作一个点,每一块骨牌看作一条边。你觉得是怎么样的呢?
小Ho:以这个例子来说的话,就是:
要把所有的骨牌连起来,也就是把所有的边都走一次。咦,这不是欧拉路问题么!
小Hi:没错,这问题其实就是一个欧拉路的问题,不过和上一次不一样的在于,这一次我们要找出一条欧拉路径。
小Ho:那我们应该如何来找一条路径呢?
小Hi:我们还是借用一下上次的例子吧
使用我们上一次证明欧拉路判定的方法,我们在这个例子中找到了2条路径:
L1: 4-5-2-3-6-5 L2: 2-4-1-2
假设我们栈S,记录我们每一次查找路径时的结点顺序。当我们找到L1时,栈S内的情况为:
S: 4 5 2 3 6 5 [Top]
此时我们一步一步出栈并将这些边删除。当我们到节点2时,我们发现节点2刚好是L1与L2的公共节点。并且L2满足走过其他边之后回到了节点2。如果我们在这个地方将L2先走一遍,再继续走L1不就刚好走过了所有边么。
而且在上一次的证明中我们知道,除了L1之外,其他的路径L2、L3...一定都满足起点与终点为同一个点。所以从任意一个公共节点出发一定有一条路径回到这个节点。
由此我们得到了一个算法:
在原图中找一个L1路径
从L1的终点往回回溯,依次将每个点出栈。并检查当前点是否还有其他没有经过的边。若存在则以当前点为起点,查找L2,并对L2的节点同样用栈记录重复该算法。
当L1中的点全部出栈后,算法结束。
在这里我们再来一个有3层的例子:
在这个例子中:
L1: 1-2-6-5-1 L2: 2-3-7-2 L3: 3-4-8-3
第一步时我们将L1压入栈S,同时我们用一个数组Path来记录我们出栈的顺序:
S: [1 2 6 5 1] Path:
然后出栈到节点2时我们发现了2有其他路径,于是我们把2的另一条路径加入:
S: 1 [2 3 7 2] Path: 1 5 6
此时L2已经走完,然后再开始弹出元素,直到我们发现3有其他路径,同样压入栈:
S: 1 2 [3 4 8 3] Path: 1 5 6 2 7
之后依次弹出剩下的元素:
S: Path: 1 5 6 2 7 3 8 4 3 2 1
此时的Path就正好是我们需要的欧拉路径。
小Ho:原来这样就能求出欧拉路,真是挺巧妙的。
小Hi:而且这个算法在实现时也有很巧妙的方法。因为DFS本身就是一个入栈出栈的过程,所以我们直接利用DFS的性质来实现栈,其伪代码如下:
DFS(u): While (u存在未被删除的边e(u,v)) 删除边e(u,v) DFS(v) End PathSize ← PathSize + 1 Path[ PathSize ] ← u
#include<iostream> #include<cstdio> #include<cstring> #include<string.h> #include<algorithm> #include<vector> using namespace std; const int N = 1005; int n, m, flag, top, sum, du[N], ans[5005], map[N][N]; void dfs(int x) { ans[++top] = x; for(int i = 1; i <= n; i++) { if(map[x][i] >= 1) { map[x][i]--; map[i][x]--; dfs(i); break; } } } void fleury(int x) { top = 1; ans[top] = x; while(top > 0) { int k = 0; for(int i = 1; i <= n; i++)//判断是否可扩展 { if(map[ans[top]][i] >= 1)//若存在一条从ans[top]出发的边 那么就是可扩展 {k = 1; break;} } if(k == 0)//该点x没有其他的边可以先走了(即不可扩展), 那么就输出它 { printf("%d ", ans[top]); top--; } else if(k == 1)//如可扩展, 则dfs可扩展的哪条路线 { top--;//这需要注意 dfs(ans[top+1]); } } } int main() { while(scanf("%d%d", &n, &m) != EOF) { memset(du, 0, sizeof(du)); memset(map, 0, sizeof(map)); for(int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); map[x][y]++; //记录边, 因为是无向图所以加两条边, 两个点之间可能有多条边 map[y][x]++; du[x]++; du[y]++; } flag = 1; // flag标记开始点。 如果所有点度数全为偶数那就从1开始搜 sum = 0; for(int i = 1; i <= n; i++) { if(du[i] % 2 == 1) { sum++; flag = i;// 若有奇数边, 从奇数边开始搜 } } if(sum == 0 || sum == 2) fleury(flag); } return 0; }
hiho欧拉路·二 --------- Fleury算法求欧拉路径
标签:
原文地址:http://www.cnblogs.com/wd-one/p/4584182.html