标签:
#include<iostream> #include<cstdlib> #include<cstdio> #include<ctime> #include<cstring> #include<vector> #include<queue> #include<array> #include<windows.h> using namespace std; const int INF = INT_MAX; //Edmond Karp. bool EK_bfs(vector<vector<int> > &G, int src, int dest, vector<int> &Pre) { vector<int> visited(G.size(), false); vector<int> _Pre(G.size(), -1); queue<int> Q; Q.push(src); visited[src] = true; while (!Q.empty()) { int nd = Q.front(); if (nd == dest) break; Q.pop(); for (int i = 0; i < G.size(); ++i) { if (!visited[i] && G[nd][i] > 0) { _Pre[i] = nd; Q.push(i); visited[i] = true; } } } Pre.swap(_Pre); if (Pre[dest] == -1) return false; else return true; } struct Node { int dist; bool visited; Node() : dist(INF), visited(false) {} }; bool Dijkstra(vector<vector<int> > &G, int src, int dest, vector<int> & Pre) { vector<Node> D(G.size()); vector<int> _Pre(G.size(), -1); D[src].dist = 0; for (int i = 0; i < G.size() - 1; ++i) { //extract min int min = -1; for (int j = 0; j < G.size(); ++j) { if (!D[j].visited && (min == -1 || D[j].dist < D[min].dist)) min = j; } if (D[min].dist == INF) break; else D[min].visited = true; //relax for (int j = 0; j < G.size(); ++j) { if (!D[j].visited && G[min][j] > 0 && D[j].dist > D[min].dist + G[min][j]) { D[j].dist = D[min].dist + G[min][j]; _Pre[j] = min; } } } Pre.swap(_Pre); if (D[dest].dist == INF) return false; else return true; } int Max_flow(vector<vector<int> > & G, int src, int dest) { int mxf = 0; vector<int> Pre; while (Dijkstra(G, src, dest, Pre)) { //while (EK_bfs(G, src, dest, Pre)) { int minf = INF; int e = dest; while (Pre[e] != -1) { minf = min(minf, G[Pre[e]][e]); e = Pre[e]; } e = dest; while (Pre[e] != -1) { G[Pre[e]][e] -= minf; G[e][Pre[e]] += minf; e = Pre[e]; } mxf += minf; } return mxf; } int main(void) { int N, M; while (cin >> N >> M) { vector<vector<int> > G(N, vector<int>(N, 0)); for (int i = 0; i < M; ++i) { int s, t; cin >> s >> t; cin >> G[s][t]; //G[s][t] > 0 } int src, dest; cin >> src >> dest; int mx_f; LARGE_INTEGER t1, t2, tc; QueryPerformanceFrequency(&tc); QueryPerformanceCounter(&t1); mx_f = Max_flow(G, src, dest); QueryPerformanceCounter(&t2); printf("Use Time:%f\n", (t2.QuadPart - t1.QuadPart)*1.0 / tc.QuadPart); cout << "Max_flow: " << mx_f << endl; } system("pause"); return 0; }
6
8
0 1 2
0 2 3
1 3 3
1 4 1
2 3 1
2 4 1
3 5 2
4 5 3
0 5
样本输出:
Use Time:0.000168 (不同情况有不同结果)
Max_flow: 4
C++ 基于Dijkstra算法和基于BFS算法的Ford Fulkson算法比较
标签:
原文地址:http://blog.csdn.net/qq_21555605/article/details/46572043