位运算:
~(非)——》二进制数进行0和1的互换
例子:
public class Test { public static void main(String[] args) { System.out.println(~-2);//输出1 System.out.println(~-1);//输出0 System.out.println(~0);//输出-1 System.out.println(~1);//输出-2 System.out.println(~2);//输出-3 System.out.println(~3);//输出-4 } }
^(异或)——》12 ^ 10 = ...01100^01010 = 00110 = 6
例子:
public class Test { public static void main(String[] args) { int a = 0; int b = 0; b = a = 12^10; System.out.println(a);//输出为 6 a = a^12; System.out.println(a);//输出为 10 b = b^10; System.out.println(b);//输出为 12 } }
应用:二个不同的数进行交换
public class Test { public static void main(String[] args) { int a = 12; int b = 10; System.out.println(a + "---" + b);// 输出为12---10 a = a ^ b; b = a ^ b; a = a ^ b; System.out.println(a + "---" + b);// 输出为10---12 } }
&(与)——》12 & 10 = ...01100 & 01010 = 01000 = 8
例子:
public class Test { public static void main(String[] args) { int a = 12; int b = 10; int c = a&b; System.out.println(c);//输出为 8 } }
应用:
public class Test { public static void main(String[] args) { int[] a = new int[2]; a[0] = 5; a[1] = 6; for (int i = 0; i < a.length; i++) { if ((a[i] & 1) == 1) {// 判断是否为奇数 System.out.println(a[i] + "奇数"); } else { System.out.println(a[i] + "偶数"); } } // 输出为: // 5"奇数" // 6"偶数" } }
例子:
public class Test { public static void main(String[] args) { int a = 12; int b = 10; // ...01100 | ...01010 = 01110 = 14 int c = a | b; System.out.println(c);// 输出为14 } }
应用:和位移一起运算可以打包成不同位数的整数
public class Test { public static void main(String[] args) { int a = 1; int b = 2; // 256 | 2 = ...01 0000 0000 | ...0010 = ...01 0000 0010 = 258 int c = a << 8 | b; System.out.println(c);// 输出为258 } }
>>(右位移)——》12>>2 = 00...01100 >>2 = 00...00011 = 3
-1 >>>24 = 1111...111 >>>24 = 1111...1111 1111 = -1
>>>(无符号)——》 -1 >>> 24 = 1111...111 >>> 24 = 0000...1111 1111 = 255
public class Test { public static void main(String[] args) { int a = -1; // 1111...111 >>> 24 = 0000...1111 1111 = 255 int b = a>>>24; System.out.println(b);// 输出为255 } }12>>2 = 00...01100 >>2 = 00...00011 = 3
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/hncu1306602liuqiang/article/details/46657521