标签:堆排序
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以看作是对选择排序的改进。
通常堆是通过一维数组来实现的。在起始数组为0的情形中:
在堆的数据结构中,堆中的最大值总是位于根节点。堆中定义以下几种操作:
最大堆调整有递归和非递归实现方式。
void Heap_adjust(int arr[], int index, int len)
{
while(true)
{
int iMax = index;
int iLeft = 2 * index + 1;
int iRight = 2 * index + 2;
if(iLeft < len && arr[index] < arr[iLeft])
iMax = iLeft;
if(iRight < len && arr[index] < arr[iRight])
iMax = iRight;
if(iMax != index)
{
swap(arr[index], arr[iMax]);
index = iMax;
}
else
break;
}
}
void Heap_adjust2(int arr[], int index, int len)
{
int iMax = index;
int iLeft = 2 * index + 1;
int iRight = 2 * index + 2;
if(iLeft < len && arr[index] < arr[iLeft])
iMax = iLeft;
if(iRight < len && arr[index] < arr[iRight])
iMax = iRight;
if(iMax != index)
{
swap(arr[index], arr[iMax]);
Heap_adjust2(arr, iMax, len);
}
}
void Build_maxheap(int arr[], int len)
{
for(int i = len / 2; i >= 0; i --)
{
Heap_adjust(arr, i , len);
}
}
void Heap_Sort(int arr[], int len)
{
Build_maxheap(arr, len);
for(int i = len - 1; i > 0; i --)
{
swap(arr[0], arr[i]);
Heap_adjust(arr, 0, i);
}
}
#include <iostream>
#include <cstring>
#include <ctime>
#include <cmath>
using namespace std;
#define ArraySize 100000
void swap(int *x, int *y)
{
int temp;
temp = *x;
*x = *y;
*y = temp;
}
void Bubble_sort(int arr[], int len)
{
for(int i = 0; i < len; i ++)
{
for(int j = i + 1; j < len; j ++)
if(arr[i] > arr[j])
swap(arr[i], arr[j]);
}
}
void Bubble_sort1(int arr[], int len)
{
for(int i = 0; i < len; i ++)
{
for(int j = len - 1; j >= i; j --)
{
if(arr[i] > arr[j])
swap(arr[i], arr[j]);
}
}
}
void Bubble_sort2(int arr[], int len)
{
bool flag = true;
while(flag)
{
flag = false;
for(int i = 0; i < len; i ++)
for(int j = len - 1; j >= i; j --)
if(arr[i] > arr[j])
swap(arr[i], arr[j]);
}
}
void Slect_sort(int arr[], int len)
{
for(int i = 0; i < len; i ++)
{
int min_index = i ;
for(int j = i + 1; j < len; j ++)
{
if(arr[min_index] > arr[j])
min_index = j;
}
if(i != min_index)
swap(arr[i],arr[min_index]);
}
}
void Insert_sort(int arr[], int len)
{
for(int i= 1; i < len; i ++)
{
int key = arr[i];
int j = i;
while(j && arr[j - 1] > key)
{
arr[j] = arr[j - 1];
j --;
}
arr[j] = key;
}
}
void Shell_sort(int arr[], int len)
{
int increment = len / 2;
while(increment)
{
for(int i = increment; i < len; i ++)
{
int key = arr[i];
/*int j ;
for(j = i; j >= increment; j -= increment)
{
if(arr[j-increment] > key )
arr[j] = arr[j-increment];
else
break;
}*/
int j = i;
while(j >= increment && arr[j-increment] > key)
{
arr[j] = arr[j-increment];
j -= increment;
}
arr[j] = key;
}
increment /= 2;
}
}
void Shell_sort1(int arr[], int len)
{
int increment = 0;
for(increment = len/2; increment > 0; increment /=2)
{
for(int i = increment; i < len; i++)
{
int key = arr[i];
int j = 0;
for(j = i; j >= increment; j -=increment)
{
if(arr[j-increment] > key)
arr[j] = arr[j-increment];
else
break;
}
arr[j] = key;
}
}
}
void Shell_sort2(int arr[], int len)
{
int index = log( 2*len + 1) / log(3.0);
//cout << index << endl;
int increment = ( pow(3.0, index) - 1 ) / 2;
//cout << increment << endl;
while(increment)
{
for(int i = increment; i < len; i ++)
{
int key = arr[i];
/*int j ;
for(j = i; j >= increment; j -= increment)
{
if(arr[j-increment] > key )
arr[j] = arr[j-increment];
else
break;
}*/
int j = i;
while(j >= increment && arr[j-increment] > key)
{
arr[j] = arr[j-increment];
j -= increment;
}
arr[j] = key;
}
index -= 1;
increment = ( pow(3.0, index) - 1 ) / 2;
}
}
void Heap_adjust(int arr[], int index, int len)
{
while(true)
{
int iMax = index;
int iLeft = 2 * index + 1;
int iRight = 2 * index + 2;
if(iLeft < len && arr[index] < arr[iLeft])
iMax = iLeft;
if(iRight < len && arr[index] < arr[iRight])
iMax = iRight;
if(iMax != index)
{
swap(arr[index], arr[iMax]);
index = iMax;
}
else
break;
}
}
void Heap_adjust2(int arr[], int index, int len)
{
int iMax = index;
int iLeft = 2 * index + 1;
int iRight = 2 * index + 2;
if(iLeft < len && arr[index] < arr[iLeft])
iMax = iLeft;
if(iRight < len && arr[index] < arr[iRight])
iMax = iRight;
if(iMax != index)
{
swap(arr[index], arr[iMax]);
Heap_adjust2(arr, iMax, len);
}
}
void Build_maxheap(int arr[], int len)
{
for(int i = len / 2; i >= 0; i --)
{
Heap_adjust(arr, i , len);
}
}
void Heap_Sort(int arr[], int len)
{
Build_maxheap(arr, len);
for(int i = len - 1; i > 0; i --)
{
swap(arr[0], arr[i]);
Heap_adjust(arr, 0, i);
}
}
void Print_array(int arr[], int len)
{
for(int i = 0; i < len; i++)
{
cout << arr[i] << " ";
}
cout << endl;
}
int main(int argc, char const *argv[])
{
/* code */
int Array[ArraySize];
int Array1[ArraySize];
int Array2[ArraySize];
time_t begin , end;
srand(time(NULL));
for(int i = 0; i < ArraySize; i ++)
{
Array[i] = rand()%ArraySize;
//cout << Array[i] << " ";
}
memcpy(Array1, Array, ArraySize * sizeof(Array1[0]));
memcpy(Array2, Array, ArraySize * sizeof(Array2[0]));
// Print_array(Array, ArraySize);
/* begin = clock();
Bubble_sort2(Array, ArraySize);
end = clock();
cout << "Bubble_sort runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;
begin = clock();
Slect_sort(Array1, ArraySize);
end = clock();
cout << "Slect_sort runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;
begin = clock();
Insert_sort(Array2, ArraySize);
end = clock();
cout << "Insert_sort runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;*/
begin = clock();
Shell_sort1(Array1, ArraySize);
end = clock();
cout << "Shell_sort1 runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;
begin = clock();
Shell_sort2(Array2, ArraySize);
end = clock();
cout << "Shell_sort2 runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;
begin = clock();
Heap_Sort(Array, ArraySize);
end = clock();
cout << "Heap_Sort runtime: " << double(end - begin) / CLOCKS_PER_SEC << "s" << endl;
//Print_array(Array2, ArraySize);
return 0;
}
运行结果如下:
Shell_sort1 runtime: 0.038s
Shell_sort2 runtime: 0.021s
Heap_Sort runtime: 0.004s
建立N个元素的二叉堆需要花费
堆排序 - 维基百科,自由的百科全书
https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F
常见排序算法 - 堆排序 (Heap Sort) | bubkoo
http://bubkoo.com/2014/01/14/sort-algorithm/heap-sort/
标签:堆排序
原文地址:http://blog.csdn.net/zwhlxl/article/details/46679265