标签:
本文共列出了11个常见的二叉树遍历算法。二叉树的遍历主要有深度优先遍历和广度优先遍历。深度优先遍历包含前序遍历、中序遍历和后序遍历。
值得一提的是, 其中的 Morris 算法 可以线性时间不需要额外空间(用户栈或系统栈空间)实现二叉树的前序遍历、中序遍历和后序遍历。关于Morris算法, 可参考 http://www.cnblogs.com/AnnieKim/archive/2013/06/15/morristraversal.html
算法清单:
A1、 A2、 A3, 分别是中序遍历的递归、迭代、和Morris算法实现。
A4、 A5、 A6, 分别是前序遍历的递归、迭代、和Morris算法实现。
A7、 A8、 A9, 分别是后序遍历的递归、迭代、和Morris算法实现。
A10 是广度优先遍历算法实现。
A11 ZigZag顺序的遍历算法。
C++源代码:
1 #include <iostream> 2 #include <stack> 3 #include <queue> 4 using namespace std; 5 6 struct bt_node { 7 int value; 8 bt_node *left, *right; 9 bt_node(int val = 0) 10 : value(val), left(NULL), right(NULL) {} 11 }; 12 13 void process(bt_node* pnode) { 14 if (pnode != NULL) 15 cout << pnode->value << " "; 16 } 17 18 // A1 19 void recursive_inorder_traversal(bt_node* root) { 20 if (root != NULL) { 21 recursive_inorder_traversal(root->left); 22 process(root); 23 recursive_inorder_traversal(root->right); 24 } 25 } 26 27 // A2 28 void iterative_inorder_traversal(bt_node* root) { 29 stack<bt_node*> _stack; 30 bt_node* p = root; 31 while (p != NULL) { 32 while (p != NULL) { 33 _stack.push(p); 34 p = p->left; 35 } 36 p = _stack.top(); 37 _stack.pop(); 38 process(p); 39 while (p->right == NULL && !_stack.empty()) { 40 p = _stack.top(); 41 _stack.pop(); 42 process(p); 43 } 44 p = p->right; 45 } 46 } 47 48 // A3 49 void morris_inorder_traversal(bt_node* root) { 50 bt_node* p = root; 51 while (p != NULL) { 52 if (p->left == NULL) { 53 process(p); 54 p = p->right; 55 } else { 56 bt_node* tmp = p->left; 57 while (tmp->right != NULL && tmp->right != p) { 58 tmp = tmp->right; 59 } 60 if (tmp->right == NULL) { 61 tmp->right = p; 62 p = p->left; 63 } else { 64 tmp->right = NULL; 65 process(p); 66 p = p->right; 67 } 68 } 69 } 70 } 71 72 // A4 73 void recursive_preorder_traversal(bt_node* root) { 74 if (root != NULL) { 75 process(root); 76 recursive_preorder_traversal(root->left); 77 recursive_preorder_traversal(root->right); 78 } 79 } 80 81 // A5 82 void iterative_preorder_traversal(bt_node* root) { 83 stack<bt_node*> _stack; 84 bt_node* p = root; 85 while (p != NULL) { 86 while (p != NULL) { 87 process(p); 88 _stack.push(p); 89 p = p->left; 90 } 91 p = _stack.top(); 92 _stack.pop(); 93 while (p->right == NULL && !_stack.empty()) { 94 p = _stack.top(); 95 _stack.pop(); 96 } 97 p = p->right; 98 } 99 } 100 101 // A6 102 void morris_preorder_traversal(bt_node* root) { 103 bt_node* p = root; 104 while (p != NULL) { 105 if (p->left == NULL) { 106 process(p); 107 p = p->right; 108 } else { 109 bt_node* tmp = p->left; 110 while (tmp->right != NULL && tmp->right != p) 111 tmp = tmp->right; 112 if (tmp->right == NULL) { 113 tmp->right = p; 114 process(p); 115 p = p->left; 116 } else { 117 tmp->right = NULL; 118 p = p->right; 119 } 120 } 121 } 122 } 123 124 125 // A7 126 void recursive_postorder_traversal(bt_node* root) { 127 if (root != NULL) { 128 recursive_postorder_traversal(root->left); 129 recursive_postorder_traversal(root->right); 130 process(root); 131 } 132 } 133 134 // A8 135 void iterative_postorder_traversal(bt_node* root) { 136 stack<bt_node*> _stack; 137 bt_node *p = root, *q = NULL; 138 while (p != NULL) { 139 _stack.push(p); 140 p = p->left; 141 } 142 while (!_stack.empty()) { 143 p = _stack.top(); 144 if (p->right == NULL || p->right == q) { 145 _stack.pop(); 146 process(p); 147 q = p; 148 } else { 149 p = p->right; 150 while (p != NULL) { 151 _stack.push(p); 152 p = p->left; 153 } 154 } 155 } 156 } 157 158 bt_node* reverse(bt_node* pnode) { 159 bt_node aux_node; 160 bt_node* p = &aux_node; 161 bt_node* q = pnode; 162 while (q != NULL) { 163 bt_node* next = q->right; 164 q->right = p->right; 165 p->right = q; 166 q = next; 167 } 168 return p->right; 169 } 170 171 void process_in_reverse_order(bt_node* pnode) { 172 pnode = reverse(pnode); 173 bt_node* p = pnode; 174 while (p != NULL) { 175 process(p); 176 p = p->right; 177 } 178 reverse(pnode); 179 } 180 181 // A9 182 void morris_postorder_traversal(bt_node* root) { 183 bt_node dummy; 184 dummy.left = root; 185 bt_node *p = &dummy; 186 while (p != NULL) { 187 if (p->left == NULL) { 188 p = p->right; 189 } else { 190 bt_node* tmp = p->left; 191 while (tmp->right != NULL && tmp->right != p) 192 tmp = tmp->right; 193 if (tmp->right == NULL) { 194 tmp->right = p; 195 p = p->left; 196 } else { 197 tmp->right = NULL; 198 process_in_reverse_order(p->left); 199 p = p->right; 200 } 201 } 202 } 203 } 204 205 // A10 206 void breadth_first_traversal(bt_node* root) { 207 queue<bt_node*> _queue; 208 _queue.push(root); 209 while (!_queue.empty()) { 210 bt_node* p = _queue.front(); 211 _queue.pop(); 212 process(p); 213 if (p->left != NULL) { 214 _queue.push(p->left); 215 } 216 if (p->right != NULL) { 217 _queue.push(p->right); 218 } 219 } 220 } 221 222 // A11 223 void zigzag_order_traversal(bt_node* root) { 224 stack<bt_node*> _stack1; 225 stack<bt_node*> _stack2; 226 _stack1.push(root); 227 int left_first = 1; 228 while (!_stack1.empty()) { 229 while (!_stack1.empty()) { 230 bt_node* p = _stack1.top(); 231 _stack1.pop(); 232 process(p); 233 if (left_first) { 234 if (p->left != NULL) 235 _stack2.push(p->left); 236 if (p->right != NULL) 237 _stack2.push(p->right); 238 } else { 239 if (p->right != NULL) 240 _stack2.push(p->right); 241 if (p->left != NULL) 242 _stack2.push(p->left); 243 } 244 } 245 left_first = left_first ^ 0x01; 246 _stack1.swap(_stack2); // C++11 Standard 247 } 248 } 249 250 // Test 251 int main() { 252 const int n = 7; 253 bt_node* ptr[n]; 254 for (int i = 0; i < n; i++) { 255 ptr[i] = new bt_node(i+1); 256 } 257 ptr[0]->left = ptr[1]; 258 ptr[0]->right = ptr[2]; 259 ptr[1]->left = ptr[3]; 260 ptr[1]->right = ptr[4]; 261 ptr[2]->left = ptr[5]; 262 ptr[4]->left = ptr[6]; 263 264 /* 265 * 1 266 * / 267 * 2 3 268 * / \ / 269 * 4 5 6 270 * / 271 * 7 272 */ 273 274 recursive_inorder_traversal(ptr[0]); 275 cout << endl; 276 iterative_inorder_traversal(ptr[0]); 277 cout << endl; 278 morris_inorder_traversal(ptr[0]); 279 cout << endl; 280 281 recursive_preorder_traversal(ptr[0]); 282 cout << endl; 283 iterative_preorder_traversal(ptr[0]); 284 cout << endl; 285 morris_preorder_traversal(ptr[0]); 286 cout << endl; 287 288 recursive_postorder_traversal(ptr[0]); 289 cout << endl; 290 iterative_postorder_traversal(ptr[0]); 291 cout << endl; 292 morris_postorder_traversal(ptr[0]); 293 cout << endl; 294 295 breadth_first_traversal(ptr[0]); 296 cout << endl; 297 zigzag_order_traversal(ptr[0]); 298 cout << endl; 299 300 for (int i = 0; i < n; i++) { 301 delete ptr[i]; 302 } 303 return 0; 304 }
程序输出:
4 2 7 5 1 6 3 4 2 7 5 1 6 3 4 2 7 5 1 6 3 1 2 4 5 7 3 6 1 2 4 5 7 3 6 1 2 4 5 7 3 6 4 7 5 2 6 3 1 4 7 5 2 6 3 1 4 7 5 2 6 3 1 1 2 3 4 5 6 7 1 3 2 4 5 6 7
Binary Tree Traversal Algorithms (二叉树遍历算法)
标签:
原文地址:http://www.cnblogs.com/bestofme/p/4623792.html