码迷,mamicode.com
首页 > 编程语言 > 详细

求质数的几种算法

时间:2015-07-07 16:48:26      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:

http://blog.sina.com.cn/s/blog_622e77cc0100n5lm.html

1、根据质数的定义求
  质数定义:只能被1或者自身整除的自然数(不包括1),称为质数。
  利用它的定义可以循环判断该数除以比它小的每个自然数(大于1),如果有能被它整除的,则它就不是质数。
对应代码是:

        /// <summary>
        /// 输出从2到max的所有质数
        /// </summary>
        /// <param name="max"></param>
        public static void Prime(int max)
        {
            bool flag = false;
            int count = 0;
            for (int i = 2; i <= max; i++)
            {
                flag = IsPrime(i);
                if (flag)
                {
                    Console.Write("{0,3} ",i);
                    count++;
                    if (count % 8 == 0)
                    {
                        Console.WriteLine();
                    }
                }

            }
        }

        /// <summary>
        /// 判断输入的数字是否是质数
        /// </summary>
        /// <param name="n"></param>
        /// <returns></returns>
        public static bool IsPrime(int n)
        {
            bool flag = true;
            if (n < 2)
            {
                throw new ArgumentOutOfRangeException();
            }
            for (int i = 2; i <= n - 1; i++)
            {
                if (n % i == 0)
                {
                    flag = false;
                    break;
                }
            }
            return flag;
        }

技术分享
2、利用一个定理——如果一个数是合数,那么它的最小质因数肯定小于等于他的平方根。例如:50,最小质因数是2,2<50的开根号
再比如:15,最小质因数是3,3<15的开根号
  合数是与质数相对应的自然数。一个大于1的自然数如果它不是合数,则它是质数。
  上面的定理是说,如果一个数能被它的最小质因数整除的话,那它肯定是合数,即不是质数。所以判断一个数是否是质数,只需判断它是否能被小于它开跟后后的所有数整除,这样做的运算就会少了很多,因此效率也高了很多。
对应代码是:

只需要将之前的质数判断更改一下就可以了

        /// <summary>
        /// 判断输入的数字是否是质数
        /// </summary>
        /// <param name="n"></param>
        /// <returns></returns>
        public static bool IsPrime(int n)
        {
            bool flag = true;
            if (n < 2)
            {
                throw new ArgumentOutOfRangeException();
            }
            int max = Convert.ToInt32(Math.Floor(Math.Sqrt(n)));
            for (int i = 2; i <= max; i++)
            {
                if (n % i == 0)
                {
                    flag = false;
                    break;
                }
            }
            return flag;
        }

 

3、筛法求质数,效率最高,但会比较浪费内存
  首先建立一个boolean类型的数组,用来存储你要判断某个范围内自然数中的质数,例如,你要输出小于200的质数,你需要建立一个大小为201(建立201个存储位置是为了让数组位置与其大小相同)的boolean数组,初始化为true。
  其次用第二种方法求的第一个质数(在此是2),然后将是2的倍数的数全置为false(2除外),即2、4、6、8……位置上置为false。然后是3的倍数的全置为false(3除外),一直到14(14是200的开平方),这样的话把不是质数的位置上置为false了,剩下的全是质数了,挑着是true的打印出来就行了。
对应代码是:
boolean[] printPrime(int range){
        boolean[] isPrime=new boolean[range+1];
        isPrime[1]=false;//1不是质数
        Arrays.fill(isPrime, 2,range+1,true);//全置为true(大于等于2的位置上)
        int n=(int)Math.sqrt(range);//对range开根号
        for(int i=2;i<=n;i++)//注意需要小于等于n
            if(isPrime[i])//查看是不是已经置false过了
                for(int j=i;j*i<range;j++)//将是i倍数的位置置为false
                    isPrime[j*i]=false;
        return isPrime;//返回一个boolean数组
}

求质数的几种算法

标签:

原文地址:http://www.cnblogs.com/chucklu/p/4627058.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!