标签:
<pre name="code" class="java"> import java.util.HashMap; import java.util.LinkedList; import java.util.Queue; /*广度遍历是遍历到某个顶点,然后访问其连接点a,b;接着访问a的连接表, 很自然的,这种数据结构就是HashMap,以顶点为key,保存每个顶点的连接表 */ public class BFS { static int count=0; /* * HashMap<Character,LinkedList<Character>> graph 这个HashMap是用于存放图中每个node的邻接表 * 表示此映射所维护的键的类型为Character,此映射值的类型为LinkedList<Character> graph * 表示将映射关系存放在graph此映射中 * * LinkedList<Character> 表示在此Collection中保持元素类型为Character * * HashMap<Character,Integer> dist 这个HashMap 是用于存放每个node与距离顶点s的距离的映射关系 * 表示此映射所维护的键的类型为Character 此映射所维护的值的类型为Integer,dist表示将映射关系存放到dist此映射中 */ private void bfs(HashMap<Character, LinkedList<Character>> graph, HashMap<Character, Integer> dist, char start) { // Queue<Character> 表示在此Collection中所保存的元素的类型为Character Queue<Character> q = new LinkedList<Character>(); q.add(start);// 将指定元素s插入队列,成功时返回true,如果没有可用空间,则返回illegalStateException //put(start,0) start为指定值将要关联的键,0为指定值将要关联的值, 如果start与0的映射关系已存在,则返回并替换旧值0 //如果 start与0的映射关系不存在,则返回null dist.put(start, 0); int i = 0; while (!q.isEmpty())// { char top = q.poll();// 获取并移除队列的头,返回队列的头,如果队列为空,返回null i++; // dist.get(top) 返回指定键top所映射的值 System.out.println("The " + i + "th element:" + top+ " Distance from s is:" + dist.get(top)); int d = dist.get(top) + 1;// 得出其周边还未被访问的节点的距离 /* * graph.get(top)如果此映射包含一个满足 (key==null ? k==null : key.equals(k)) * 的从 k 键到 v 值的映射关系,则此方法返回 v;否则返回 null。(最多只能有一个这样的映射关系。) * for(元素变量:元素集合),如果元素集合中所有元素都已遍历过,则结束此循环, 否则执行for循环里的程序块 */ for (Character c : graph.get(top)) { // containskey(key) 如果此映射包含对于指定键key的映射关系,则返回true if (!dist.containsKey(c))// 如果dist中还没有该元素说明还没有被访问 { //关联指定键c与指定值d,如果关联关系已存在,则替换旧值d,返回旧值d, 如果无映射关系,则返回null dist.put(c, d); q.add(c); // 将指定元素c插入队列,成功时返回true,如果没有可用空间,则返回illegalStateException } } } } private static void dfs(HashMap<Character , LinkedList<Character>> graph,HashMap<Character, Boolean> visited) { visit(graph, visited, 's'); } private static void visit(HashMap<Character , LinkedList<Character>> graph,HashMap<Character, Boolean> visited,char start) { if (!visited.containsKey(start)) { count++; System.out.println("The time into element " + start + ":" + count);// 记录进入该节点的时间 visited.put(start, true); for (Character c : graph.get(start)) { if (!visited.containsKey(c)) { visit(graph, visited, c);// 递归访问其邻近节点 } } count++; System.out.println("The time out element " + start + ":" + count);// 记录离开该节点的时间 } } public static void main(String args[]) { BFS bb = new BFS(); // s顶点的邻接表 LinkedList<Character> list_s = new LinkedList<Character>(); list_s.add('w'); list_s.add('r'); LinkedList<Character> list_w = new LinkedList<Character>(); list_w.add('s'); list_w.add('x'); list_w.add('i'); LinkedList<Character> list_r = new LinkedList<Character>(); list_r.add('s'); list_r.add('v'); LinkedList<Character> list_x = new LinkedList<Character>(); list_x.add('w'); list_x.add('y'); list_x.add('u'); LinkedList<Character> list_v = new LinkedList<Character>(); list_v.add('r'); LinkedList<Character> list_i = new LinkedList<Character>(); list_i.add('w'); LinkedList<Character> list_u = new LinkedList<Character>(); list_u.add('x'); LinkedList<Character> list_y = new LinkedList<Character>(); list_y.add('x'); HashMap<Character, LinkedList<Character>> graph = new HashMap<Character, LinkedList<Character>>(); graph.put('s', list_s); graph.put('w', list_w); graph.put('r', list_r); graph.put('x', list_x); graph.put('v', list_v); graph.put('i', list_i); graph.put('y', list_y); graph.put('u', list_u); System.out.println("BFS starts:"); HashMap<Character, Integer> dist = new HashMap<Character, Integer>(); char start = 's'; bb.bfs(graph, dist, start); System.out.println("DFS starts:"); HashMap<Character, Boolean> visited=new HashMap<Character, Boolean>(); bb.dfs(graph, visited); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/cfcf0517/article/details/46789235