码迷,mamicode.com
首页 > 系统相关 > 详细

【MATLAB】Machine Learning (Coursera Courses Outline & Schedule)

时间:2015-07-11 06:41:10      阅读:442      评论:0      收藏:0      [点我收藏+]

标签:

课程涉及技术:

梯度下降、线性回归、监督/非监督学习、分类/逻辑回归、正则化、神经网络、梯度检验/数值计算、模型选择/诊断、学习曲线、评估度量、SVM、K-Means聚类、PCA、Map Reduce & Data Parallelism 等…

课程涉及应用:

邮件分类、肿瘤诊断、手写识别、自动驾驶、模型优化、OCR等…


Coursera machine learning course materials, including problem sets and my solutions (using matlab).

以下为Coursera中的机器学习相关课程材料,包括练习题与我的Matlab解答.

Github resources (Problems & Solutions):

https://github.com/Blz-Galaxy/Machine-Learning

Coursera machine learning course materials:

https://class.coursera.org/ml/lecture/preview


Text book:

Bayesian Reasoning and Machine Learning:

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf


Video lectures:

https://www.coursera.org/learn/machine-learning


Schedule:

Week 1 - Due 07/04: DONE

  • Introduction
  • Linear regression with one variable
  • Linear Algebra review (Optional)

Week 2 - Due 07/11: DONE

  • Linear regression with multiple variables
  • Octave tutorial
  • Programming Exercise 1: Linear Regression

    Best and Most Recent Submission
    Score
    100 / 100 points earned PASSED
    Submitted on 6 七月 2015 在 7:35 晚上
    Part    Name    Score
    1   Warm up exercise    10 / 10
    2   Compute cost for one variable   40 / 40
    3   Gradient descent for one variable   50 / 50
    4   Feature normalization   0 / 0
    5   Compute cost for multiple variables 0 / 0
    6   Gradient descent for multiple variables 0 / 0
    7   Normal equations    0 / 0

Week 3 - Due 07/18: DONE

  • Logistic regression
  • Regularization
  • Programming Exercise 2: Logistic Regression

    Best and Most Recent Submission
    Score
    100 / 100 points earned PASSED
    Submitted on 8 七月 2015 在 1:00 凌晨
    Part    Name    Score
    1   Sigmoid function    5 / 5
    2   Compute cost for logistic regression    30 / 30
    3   Gradient for logistic regression    30 / 30
    4   Predict function    5 / 5
    5   Compute cost for regularized LR 15 / 15
    6   Gradient for regularized LR 15 / 15

Week 4 - Due 07/25: DONE

  • Neural Networks: Representation
  • Programming Exercise 3: Multi-class Classification and Neural Networks

    Best and Most Recent Submission
    Score
    100 / 100 points earned PASSED
    Submitted on 9 七月 2015 在 1:16 凌晨
    Part    Name    Score
    1   Regularized logistic regression 30 / 30
    2   One-vs-all classifier training  20 / 20
    3   One-vs-all classifier prediction    20 / 20
    4   Neural network prediction function  30 / 30
    

Week 5 - Due 08/01: DONE

  • Neural Networks: Learning
  • Programming Exercise 4: Neural Networks Learning

    Best and Most Recent Submission
    Score
    100 / 100 points earned PASSED
    Submitted on 9 七月 2015 在 7:25 晚上
    Part    Name    Score
    1   Feedforward and cost function   30 / 30
    2   Regularized cost function   15 / 15
    3   Sigmoid gradient    5 / 5
    4   Neural net gradient function (backpropagation)  40 / 40
    5   Regularized gradient    10 / 10
    

Week 6 - Due 08/08: DONE

  • Advice for applying machine learning
  • Machine learning system design
  • Programming Exercise 5: Regularized Linear Regression and Bias v.s. Variance

    Best and Most Recent Submission
    Score
    100 / 100 points earned PASSED
    Submitted on 11 七月 2015 在 3:28 凌晨
    Part    Name    Score
    1   Regularized linear regression cost function 25 / 25
    2   Regularized linear regression gradient  25 / 25
    3   Learning curve  20 / 20
    4   Polynomial feature mapping  10 / 10
    5   Cross validation curve  20 / 20
    

Week 7 - Due 08/15:

  • Support vector machines
  • Programming Exercise 6: Support Vector Machines

Week 8 - Due 08/22:

  • Clustering
  • Dimensionality reduction
  • Programming Exercise 7: K-means Clustering and Principal Component Analysis

Week 9 - Due 08/29:

  • Anomaly Detection
  • Recommender Systems
  • Programming Exercise 8: Anomaly Detection and Recommender Systems

Week 10/11 - Due 09/05:

  • Large scale machine learning
  • Application example: Photo OCR

【MATLAB】Machine Learning (Coursera Courses Outline & Schedule)

标签:

原文地址:http://www.cnblogs.com/KC-Mei/p/4637876.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!