标签:style blog http color strong 文件
参考文章:
http://blog.chinaunix.net/uid-25132162-id-1564955.html
http://blog.csdn.net/haoel/article/details/1948051/
一、虚函数与继承
1、空类,空类单继承,空类多继承的sizeof
#include <iostream> using namespace std; class Base1 { }; class Base2 { }; class Derived1:public Base1 { }; class Derived2:public Base1, public Base2 { }; int main() { Base1 b1; Base2 b2; Derived1 d1; Derived2 d2; cout<<"sizeof(Base1) = "<<sizeof(Base1)<<" sizeof(b1) = "<<sizeof(b1)<<endl; cout<<"sizeof(Base2) = "<<sizeof(Base2)<<" sizeof(b2) = "<<sizeof(b2)<<endl; cout<<"sizeof(Derived1) = "<<sizeof(Derived1)<<" sizeof(d1) = "<<sizeof(d1)<<endl; cout<<"sizeof(Derived2) = "<<sizeof(Derived2)<<" sizeof(d1) = "<<sizeof(d1)<<endl; return 0; }
结果为:
sizeof(Base1) = 1 sizeof(b1) = 1
sizeof(Base2) = 1 sizeof(b2) = 1
sizeof(Derived1) = 1 sizeof(d1) = 1
sizeof(Derived2) = 1 sizeof(d1) = 1
可以看出所有的结果都是1。
2、含有虚函数的类以及虚继承类的sizeof
虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。编译器必需要保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证正确取到虚函数的偏移量)。
假设我们有这样的一个类:
class Base {
public:
virtual void f() { cout << "Base::f" << endl; }
virtual void g() { cout << "Base::g" << endl; }
virtual void h() { cout << "Base::h" << endl; }
};
当我们定义一个这个类的实例,Base b时,其b中成员的存放如下:
虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符"\0"一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。
因为对象b中多了一个指向虚函数表的指针,而指针的sizeof是4,因此含有虚函数的类或实例最后的sizeof是实际的数据成员的sizeof加4。
下面将讨论针对基类含有虚函数的继承讨论
(1)在派生类中不对基类的虚函数进行覆盖,同时派生类中还拥有自己的虚函数,比如有如下的派生类:
class Derived: public Base { public: virtual void f1() { cout << "Derived::f1" << endl; } virtual void g1() { cout << "Derived::g1" << endl; } virtual void h1() { cout << "Derived::h1" << endl; } };
基类和派生类的关系如下:
当定义一个Derived的对象d后,其成员的存放如下:
可以发现:
1)虚函数按照其声明顺序放于表中。
2)父类的虚函数在子类的虚函数前面。
此时基类和派生类的sizeof都是数据成员的sizeof加4。
(2)在派生类中对基类的虚函数进行覆盖,假设有如下的派生类:
class Derived: public Base { public: virtual void f() { cout << "Derived::f" << endl; } virtual void g1() { cout << "Derived::g1" << endl; } virtual void h1() { cout << "Derived::h1" << endl; } };
基类和派生类之间的关系:其中基类的虚函数f在派生类中被覆盖了
当我们定义一个派生类对象d后,其d的成员存放为:
可以发现:
1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。
2)没有被覆盖的函数依旧。
这样,我们就可以看到对于下面这样的程序,
Base *b = new Derive();
b->f();
由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。
(3)多继承:无虚函数覆盖
假设基类和派生类之间有如下关系:
对于子类实例中的虚函数表,是下面这个样子:
我们可以看到:
1) 每个父类都有自己的虚表。
2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)
由于每个基类都需要一个指针来指向其虚函数表,因此d的sizeof等于d的数据成员加3*4=12。
(4)多重继承,含虚函数覆盖
假设,基类和派生类又如下关系:派生类中覆盖了基类的虚函数f
下面是对于子类实例中的虚函数表的图:
我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:
Derive d; Base1 *b1 = &d; Base2 *b2 = &d; Base3 *b3 = &d; b1->f(); //Derive::f() b2->f(); //Derive::f() b3->f(); //Derive::f() b1->g(); //Base1::g() b2->g(); //Base2::g() b3->g(); //Base3::g()
3、一个关于含虚函数及虚继承的sizeof计算
#include <iostream> using namespace std; class Base { public: virtual void f(); virtual void g(); virtual void h(); }; class Derived1: public Base { public: virtual void f1(); virtual void g1(); virtual void h1(); }; class Derived2:public Base { public: virtual void f(); virtual void g1(); virtual void h1(); }; class Derived3:virtual public Base { public: virtual void f1(); virtual void g1(); virtual void h1(); }; class Derived4:virtual public Base { public: virtual void f(); virtual void g1(); virtual void h1(); }; class Derived5:virtual public Base { public: virtual void f(); virtual void g(); virtual void h(); }; class Derived6:virtual public Base { }; int main() { cout<<sizeof(Base)<<endl; //4 cout<<sizeof(Derived1)<<endl; //4 cout<<sizeof(Derived2)<<endl; //4 cout<<sizeof(Derived3)<<endl; //12 cout<<sizeof(Derived4)<<endl; //12 cout<<sizeof(Derived5)<<endl; //8 cout<<sizeof(Derived6)<<endl; //8 return 0; }
对于Base, Derived1和Derived2的结果根据前面关于继承的分析是比较好理解的,不过对于虚继承的方式则有点不一样了,根据结果自己得出的一种关于虚继承的分析,如对Derived3或Derived4定义一个对象d,其里面会出现三个跟虚函数以及虚继承的指针,因为是虚继承,因此引入一个指针指向虚继承的基类,第二由于在基类中有虚函数,因此需要指针指向其虚函数表,由于派生类自己本身也有自己的虚函数,因为采取的是虚继承,因此它自己的虚函数不会放到基类的虚函数表的后面,而是另外分配一个只存放自己的虚函数的虚函数表,于是又引入一个指针,从例子中看到Derived5和Derived6的结果是8,原因是在派生类要么没有自己的虚函数,要么全部都是对基类虚函数的覆盖,因此就少了指向其派生类自己的虚函数表的指针,故结果要少4。(这个是个人的分析,但原理不知道是不是这样的)
二、不同编译器下的虚继承
1、对虚继承层次的对象的内存布局,在不同编译器实现有所区别。
首先,说说GCC的编译器.
它实现比较简单,不管是否虚继承,GCC都是将虚表指针在整个继承关系中共享的,不共享的是指向虚基类的指针。
class A {
int a;
virtual ~A(){}
};
class B:virtual public A{
virtual void myfunB(){}
};
class C:virtual public A{
virtual void myfunC(){}
};
class D:public B,public C{
virtual void myfunD(){}
};
以上代码中sizeof(A)=8,sizeof(B)=12,sizeof(C)=12,sizeof(D)=16.
解释:A中int+虚表指针。B,C中由于是虚继承因此大小为A+指向虚基类的指针,B,C虽然加入了自己的虚函数,但是虚表指针是和基类共享的,因此不会有自己的虚表指针。D由于B,C都是虚继承,因此D只包含一个A的副本,于是D大小就等于A+B中的指向虚基类的指针+C中的指向虚基类的指针。
如果B,C不是虚继承,而是普通继承的话,那么A,B,C的大小都是8(没有指向虚基类的指针了),而D由于不是虚继承,因此包含两个A副本,大小为16.注意此时虽然D的大小和虚继承一样,但是内存布局却不同。
然后,来看看VC的编译器
vc对虚表指针的处理比GCC复杂,它根据是否为虚继承来判断是否在继承关系中共享虚表指针,而对指向虚基类的指针和GCC一样是不共享,当然也不可能共享。
代码同上。
运行结果将会是sizeof(A)=8,sizeof(B)=16,sizeof(C)=16,sizeof(D)=24.
解释:A中依然是int+虚表指针。B,C中由于是虚继承因此虚表指针不共享,由于B,C加入了自己的虚函数,所以B,C分别自己维护一个虚表指针,它指向自己的虚函数。(注意:只有子类有新的虚函数时,编译器才会在子类中添加虚表指针)因此B,C大小为A+自己的虚表指针+指向虚基类的指针。D由于B,C都是虚继承,因此D只包含一个A的副本,同时D是从B,C普通继承的,而不是虚继承的,因此没有自己的虚表指针。于是D大小就等于A+B的虚表指针+C的虚表指针+B中的指向虚基类的指针+C中的指向虚基类的指针。
同样,如果去掉虚继承,结果将和GCC结果一样,A,B,C都是8,D为16,原因就是VC的编译器对于非虚继承,父类和子类是共享虚表指针的。
利用visual studio 命令提示(2008),到xx.cpp 文件目录下 运行cl /d1 reportSingleClassLayoutB xx.cpp
第一个vfptr 指向B的虚表,第二个vbptr指向A,第三个指向A的虚表,因为是虚拟继承,所以子类中有一个指向父类的虚基类指针,防止菱形继承中数据重复,这样在菱形继承中,不会出现祖先数据重复,而只指向祖先数据的指针。
【整理】C++虚函数及其继承、虚继承类大小,布布扣,bubuko.com
标签:style blog http color strong 文件
原文地址:http://www.cnblogs.com/yanqi0124/p/3829964.html