码迷,mamicode.com
首页 > Web开发 > 详细

Uva_10253 Series-Parallel Networks

时间:2015-07-16 21:36:08      阅读:160      评论:0      收藏:0      [点我收藏+]

标签:

题目链接

题目大意:

    1:一条单独的边是串并联网络

    2:G1,G2为串并联网络, 将它们的源点与汇点分别连接起来, 得到的也是串并联网络(并联)

    3:G1,G2为串并联网络, 将G1的汇点与G2的源点连接起来,得到的也是串并联网络(串联)

    串联在一起的部分可以随意交换, 并联在一起的也可以随意交换顺序

    要求:给n个点, 统计有多少种串并联网络。

  

    思路:将这个网络简化成一颗树, 每颗子树就相当于一个网络, 那么有两种情况

    1、根节点为并联网络

    2、根节点为串联网络

    由于顺序不影响结果, 所以这两种情况的结果是相等的,即只需要算出一种, 再乘以2即可得到答案

    n个点, 即这颗树有n个叶子节点。

    特例: n = 1的时候 只有一种结果

    n >= 2时:

    设f[i] 为叶子节点数为i的树的方案数, 则答案为:f[n](n > 1)

    方法一:将n 进行整数拆分, 再对分拆数进行计算求和

    方法二:设dp[i][j]为 每颗子树最大叶子节点数不超过i, 总叶子节点数为j 的方案数

               则f[i] = dp[i-1][i]

               而dp[i][j] = C(f[i] + p - 1, p) * dp[i - 1][j - p * i] (p * i <= j)

               代码:   

      

技术分享
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <algorithm>
 5 using namespace std;
 6 #define MAXN 31
 7 #define LL long long 
 8 LL f[MAXN];
 9 LL dp[MAXN][MAXN];//dp[i][j] = C(f[i] + p - 1, p) * dp[i - 1][j - p * i];
10 int n;
11 
12 LL C(LL n, LL k)
13 {
14     double ans = 1;
15     for(int i = 0; i < k; i ++)
16         ans = ans * (n - i);
17     for(int i = 1 ; i <= k; i ++)
18         ans = ans / i;
19     return (LL) (ans + 0.5);
20 }
21 void init()
22 {
23     for(int i = 0; i < MAXN; i ++) dp[i][0] = 1;
24     for(int i = 1; i < MAXN; i ++) dp[0][i] = dp[i][1] = 0;
25     f[1] = 1;
26     for(int i = 1; i < MAXN; i ++)
27     {
28         for(int j = 0; j < MAXN; j ++)
29         {
30             dp[i][j] = 0;
31             for(int p = 0; p * i <= j; p ++)
32                 dp[i][j] += (C(f[i] + p - 1, p) * dp[i-1][j-p*i]);
33         }
34         f[i + 1] = dp[i][i + 1];
35     }
36 }
37 
38 int main()
39 {
40     init();
41     while(scanf("%d",&n) && n)
42     {
43         printf("%lld\n", n == 1? 1 : 2 * f[n]);
44     }
45     return 0;
46 }
View Code

 

Uva_10253 Series-Parallel Networks

标签:

原文地址:http://www.cnblogs.com/By-ruoyu/p/4652274.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!