B树是为磁盘或其他直接存取辅助存储设备而设计的一种平衡查找树。B树的”分支因子“可能很大,即每个节点可以有很多子女。这一因子由所用磁盘特性所决定,并且可以降低磁盘I/O操作次数。许多数据库系统都使用B树或B树的变形来存储信息。
B树结构形式如下:
其特点:
1)每个节点x有以下域:
a) x.n:当前存储在节点x中的关键字
b) x.n 个key值,以非降序顺序存放,即 x.key(1) ≤ x.key(2) ≤ ... ≤ x.key(x.n)
c) x.leaf:bool型,若为叶子节点 x.leaf=TRUE,反之为FALUSE
2) 每个节点x包含x.n+1个指向其子女的指针x.c(1),x.c(2),...x.c(x.n+1)。(叶子节点无此域)
3)各关键字x.key(i)对存储在各子树中的关键字范围加以分隔:如果k(i)为存储在x.c(i)为根的子树中的关键字,则:
4) 每个叶子节点具有相同的深度,即树的高度 h
5) 每个节点包含的key数有一个上界和下界,这些界可以用一个称为B树的最小度数的固定整数 t ≥ 2 来表示:
a) 每个非根的节点必须至少有t-1个 key. 每个非根内节点至少有t个子女。如果树非空,则根节点至少包含一个key.
b) 每个节点可包含至多2t-1个key。所以一个内节点至多可能有2t个子女。如果一个节点恰好有2t-1个key,则称该点是满的。
6)如果n ≥ 1,则对任意的一棵包含n个关键字,高度为h,最小度t ≥ 2的B树T,有:
B树插入和搜索操作的完整代码如下:
#include<iostream> #include<cstdlib> #include<cstring> #define Disk_Write(x) #define Disk_Read(x) #define t 2 #define N 2*t using namespace std; typedef struct BTNode{ int n; //the number of keys storing in the current node char key[N]; //N keys storing in nondecreasing order bool leaf; //TRUE:left;FALSE:internal node BTNode *c[N+1]; //point n+1 children }BTNode; typedef struct BTree{ BTNode *root; }BTree; void BTree_Print(BTNode *x) { for(int i=1;i<=x->n;i++) { if(x->leaf == false) BTree_Print(x->c[i]); cout<< x->key[i]<<" "; } if(x->leaf == false) BTree_Print(x->c[x->n+1]); } void BTree_SplitChild(BTNode *x,int i) { BTNode *z=new BTNode(); BTNode *y=x->c[i]; //split y (2t-1 keys) into y (t-1 keys) and z(t-1 keys) z->leaf=y->leaf; z->n=t-1; for(int j=1 ; j<=t-1 ; j++) z->key[j]=y->key[t+j]; if(y->leaf==false)//if y has children ,copy its children to z for(int j=1; j<=t; j++) z->c[j]=y->c[j+t]; y->n=t-1; //let z become the (i+1)th child of x for(int j=x->n+1; j>=i+1; j--) x->c[j+1]=x->c[j]; x->c[i+1]=z; //insert the (t)th key of y into (i)th index of x for(int j=x->n; j>=i; j--) x->key[j+1]=x->key[j]; x->key[i]=y->key[t]; x->n++; Disk_Write(y); Disk_Write(z); Disk_Write(x); } void BTree_Insert_Nonfull(BTNode *x,char k) { int i=x->n; if(x->leaf) {//x node is leaf while(i>=1 && k < x->key[i]) //search for the insert index { x->key[i+1]=x->key[i]; i--; } //insert key x->key[i+1]=k; x->n++; Disk_Write(x); } else // x node is not leaf { while(i>=1 && k < x->key[i]) i--; i++; //Read its child,and insert the key into its child node Disk_Read(x->c[i]); //case 1: the child is full if(x->c[i]->n == 2*t-1) { BTree_SplitChild(x,i); if(k > x->key[i]) i++; } //case 2:the child is not full BTree_Insert_Nonfull(x->c[i],k); } } void BTree_Insert(BTree *T,char k) { BTNode *r=T->root; if(r->n == 2*t-1) {//root node is full //a new node s becomes the root BTNode *s=new BTNode(); T->root=s; s->leaf=false; s->n=0; s->c[1]=r; //split the original root into two chilren of s BTree_SplitChild(s,1); //insert the key into the nonfull node BTree_Insert_Nonfull(s,k); } else//root node is not full BTree_Insert_Nonfull(r,k); //insert key into root node directly } BTNode *BTree_Search(BTNode *x,char k,int &i) {//return pair(y,i)consisting of a node y and an index i such that y.keyi=k i=1; while(i <= x->n && k > x->key[i]) i++; if(i <= x->n && k == x->key[i]) return x; else if(x->leaf) { i=0; return NULL; } else { Disk_Read(x->c[i]); return BTree_Search(x->c[i],k,i); } } void BTree_Create(BTree *T,string ch) { //first,create an empty root node BTNode *x=new BTNode(); x->leaf=true; x->n=0; Disk_Write(x); T->root=x; //second,add new keys into T by calling Insert method for(int i=0;i<ch.length();i++) BTree_Insert(T,ch[i]); } void BTree_PrintDetail(BTNode *x) { cout<<"The root is:"; for(int i=1;i<=x->n;i++) cout<<x->key[i]<<" "; cout<<endl; cout<<"The root's child is:"<<endl; for(int j=1;j<=x->n+1;j++) { BTNode *child=x->c[j]; for(int i=1;i<=child->n;i++) cout<<child->key[i]<<" "; cout<<endl; } for(int i=1;i<=x->n+1;i++) { cout<<"The "<<i<<" child"<<endl; BTNode *child0=x->c[i]; int m=child0->n+1; for(int j=1;j<=m;j++) { BTNode *c1=child0->c[j]; for(int jj=1;jj<=c1->n;jj++) cout<<c1->key[jj]<<" "; cout<<endl; } } } int main() { //string test_ch={'F','S','Q','K','C','L','H','T','V','W','M','R','N','P','A','B','X','Y','D','Z','E'}; string test_ch="FSQKCLHTVWMRNPABXYDZE"; cout<<"/*----------------------------Create B-tree---------------------------*/"<<endl; BTree *T=new BTree(); BTree_Create(T,test_ch); cout<<"After creating ,the B-tree(its degree is "<<t<<"):"<<endl; BTree_Print(T->root); cout<<endl; cout<<"The detail B-tree is:"<<endl; BTree_PrintDetail(T->root); cout<<"/*--------------------------------------------------------------------*/"<<endl; cout<<"/*---------------------------Insert B-tree----------------------------*/"<<endl; char ich; cout<<"Please input the inserting char:"; cin>>ich; BTree_Insert(T,ich); cout<<"After inserting ,the B-tree:"<<endl; BTree_Print(T->root); cout<<endl; cout<<"The detail of B-tree is:"<<endl; BTree_PrintDetail(T->root); cout<<"/*---------------------------------------------------------------------*/"<<endl; cout<<"/*--------------------------Search B-tree------------------------------*/"<<endl; char sch; BTNode *sNode=NULL; int index; cout<<"Please input the searching char:"; cin>>sch; sNode=BTree_Search(T->root,sch,index); if(sNode==NULL) cout<<"The key doesn't exist in the B-tree."<<endl; else { cout<<"The key in the Node:"; for(int i=1;i<=sNode->n;i++) cout<<sNode->key[i]<<" "; cout<<endl; cout<<"The index of the key in the node is:"<<index<<endl; } cout<<"/*---------------------------------------------------------------------*/"<<endl; return 0; }运行结果:
【注:若有错误,请指正~~~】
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u010183397/article/details/46941045