标签:
项目使用软件:Myeclipse10.0,JDK1.7,Hadoop2.6,MySQL5.6,EasyUI1.3.6,jQuery2.0,Spring4.1.3,
Hibernate4.3.1,struts2.3.1,Tomcat7 ,Maven3.2.1。
项目下载地址:https://github.com/fansy1990/friend_find ,项目部署参考:http://blog.csdn.net/fansy1990/article/details/46481409 。
public interface ObjectInterface { /** * 不用每个表都建立一个方法,这里根据表名自动装配 * @param map * @return */ public Object setObjectByMap(Map<String,Object> map); }
/** * 更新或者插入表 * 不用每个表都建立一个方法,这里根据表名自动装配 * @param tableName * @param json * @return */ public boolean updateOrSave(String tableName,String json){ try{ // 根据表名获得实体类,并赋值 Object o = Utils.getEntity(Utils.getEntityPackages(tableName),json); baseDao.saveOrUpdate(o); log.info("保存表{}!",new Object[]{tableName}); }catch(Exception e){ e.printStackTrace(); return false; } return true; }
/** * 根据类名获得实体类 * @param tableName * @param json * @return * @throws ClassNotFoundException * @throws IllegalAccessException * @throws InstantiationException * @throws IOException * @throws JsonMappingException * @throws JsonParseException */ @SuppressWarnings("unchecked") public static Object getEntity(String tableName, String json) throws ClassNotFoundException, InstantiationException, IllegalAccessException, JsonParseException, JsonMappingException, IOException { Class<?> cl = Class.forName(tableName); ObjectInterface o = (ObjectInterface)cl.newInstance(); Map<String,Object> map = new HashMap<String,Object>(); ObjectMapper mapper = new ObjectMapper(); try { //convert JSON string to Map map = mapper.readValue(json, Map.class); return o.setObjectByMap(map); } catch (Exception e) { e.printStackTrace(); } return null; }
fs.copyFromLocalFile(src, dst);
// =====uploadId,数据上传button绑定 click方法 $(‘#uploadId‘).bind(‘click‘, function(){ var input_i=$(‘#localFileId‘).val(); // 弹出进度框 popupProgressbar(‘数据上传‘,‘数据上传中...‘,1000); // ajax 异步提交任务 callByAJax(‘cloud/cloud_upload.action‘,{input:input_i}); });其中调用aJax使用一个封装的方法,以后都可以调用,如下:
// 调用ajax异步提交 // 任务返回成功,则提示成功,否则提示失败的信息 function callByAJax(url,data_){ $.ajax({ url : url, data: data_, async:true, dataType:"json", context : document.body, success : function(data) { // $.messager.progress(‘close‘); closeProgressbar(); console.info("data.flag:"+data.flag); var retMsg; if("true"==data.flag){ retMsg=‘操作成功!‘; }else{ retMsg=‘操作失败!失败原因:‘+data.msg; } $.messager.show({ title : ‘提示‘, msg : retMsg }); if("true"==data.flag&&"true"==data.monitor){// 添加监控页面 // 使用单独Tab的方式 layout_center_addTabFun({ title : ‘MR算法监控‘, closable : true, // iconCls : node.iconCls, href : ‘cluster/monitor_one.jsp‘ }); } } }); }后台返回的是json数据,并且这里为了和云平台监控任务兼容(考虑通用性),这里还添加了一个打开监控的代码。
/** * 去重任务提交 */ public void deduplicate(){ Map<String ,Object> map = new HashMap<String,Object>(); try{ HUtils.setJobStartTime(System.currentTimeMillis()-10000); HUtils.JOBNUM=1; new Thread(new Deduplicate(input,output)).start(); map.put("flag", "true"); map.put("monitor", "true"); } catch (Exception e) { e.printStackTrace(); map.put("flag", "false"); map.put("monitor", "false"); map.put("msg", e.getMessage()); } Utils.write2PrintWriter(JSON.toJSONString(map)); }首先设置全部任务的起始时间,这里往前推迟了10s,是为了防止时间相差太大(也可以设置2s左右,如果tomcat所在机器和集群机器时间一样则不用设置);接着设置任务的总个数;最后启动多线程运行MR任务。
<script type="text/javascript"> // 自动定时刷新 1s var monitor_cf_interval= setInterval("monitor_one_refresh()",3000); </script>
function monitor_one_refresh(){ $.ajax({ // ajax提交 url : ‘cloud/cloud_monitorone.action‘, dataType : "json", success : function(data) { if (data.finished == ‘error‘) {// 获取信息错误 ,返回数据设置为0,否则正常返回 clearInterval(monitor_cf_interval); setJobInfoValues(data); console.info("monitor,finished:"+data.finished); $.messager.show({ title : ‘提示‘, msg : ‘任务运行失败!‘ }); } else if(data.finished == ‘true‘){ // 所有任务运行成功则停止timer console.info(‘monitor,data.finished=‘+data.finished); setJobInfoValues(data); clearInterval(monitor_cf_interval); $.messager.show({ title : ‘提示‘, msg : ‘所有任务成功运行完成!‘ }); }else{ // 设置提示,并更改页面数据,多行显示job任务信息 setJobInfoValues(data); } } }); }
/** * 单个任务监控 * @throws IOException */ public void monitorone() throws IOException{ Map<String ,Object> jsonMap = new HashMap<String,Object>(); List<CurrentJobInfo> currJobList =null; try{ currJobList= HUtils.getJobs(); // jsonMap.put("rows", currJobList);// 放入数据 jsonMap.put("jobnums", HUtils.JOBNUM); // 任务完成的标识是获取的任务个数必须等于jobNum,同时最后一个job完成 // true 所有任务完成 // false 任务正在运行 // error 某一个任务运行失败,则不再监控 if(currJobList.size()>=HUtils.JOBNUM){// 如果返回的list有JOBNUM个,那么才可能完成任务 if("success".equals(HUtils.hasFinished(currJobList.get(currJobList.size()-1)))){ jsonMap.put("finished", "true"); // 运行完成,初始化时间点 HUtils.setJobStartTime(System.currentTimeMillis()); }else if("running".equals(HUtils.hasFinished(currJobList.get(currJobList.size()-1)))){ jsonMap.put("finished", "false"); }else{// fail 或者kill则设置为error jsonMap.put("finished", "error"); HUtils.setJobStartTime(System.currentTimeMillis()); } }else if(currJobList.size()>0){ if("fail".equals(HUtils.hasFinished(currJobList.get(currJobList.size()-1)))|| "kill".equals(HUtils.hasFinished(currJobList.get(currJobList.size()-1)))){ jsonMap.put("finished", "error"); HUtils.setJobStartTime(System.currentTimeMillis()); }else{ jsonMap.put("finished", "false"); } } if(currJobList.size()==0){ jsonMap.put("finished", "false"); // return ; }else{ if(jsonMap.get("finished").equals("error")){ CurrentJobInfo cj =currJobList.get(currJobList.size()-1); cj.setRunState("Error!"); jsonMap.put("rows", cj); }else{ jsonMap.put("rows", currJobList.get(currJobList.size()-1)); } } jsonMap.put("currjob", currJobList.size()); }catch(Exception e){ e.printStackTrace(); jsonMap.put("finished", "error"); HUtils.setJobStartTime(System.currentTimeMillis()); } System.out.println(new java.util.Date()+":"+JSON.toJSONString(jsonMap)); Utils.write2PrintWriter(JSON.toJSONString(jsonMap));// 使用JSON数据传输 return ; }
/** * 根据时间来判断,然后获得Job的状态,以此来进行监控 Job的启动时间和使用system.currentTimeMillis获得的时间是一致的, * 不存在时区不同的问题; * * @return * @throws IOException */ public static List<CurrentJobInfo> getJobs() throws IOException { JobStatus[] jss = getJobClient().getAllJobs(); List<CurrentJobInfo> jsList = new ArrayList<CurrentJobInfo>(); jsList.clear(); for (JobStatus js : jss) { if (js.getStartTime() > jobStartTime) { jsList.add(new CurrentJobInfo(getJobClient().getJob( js.getJobID()), js.getStartTime(), js.getRunState())); } } Collections.sort(jsList); return jsList; }当有多个任务时,使用此监控也是可以的,只用设置HUtils.JOBNUM的值即可。
fs.copyToLocalFile(false, file.getPath(), new Path(dst, "hdfs_" + (i++) + HUtils.DOWNLOAD_EXTENSION), true);4.数据入库
/** * 批量插入xmlPath数据 * @param xmlPath * @return */ public Map<String,Object> insertUserData(String xmlPath){ Map<String,Object> map = new HashMap<String,Object>(); try{ baseDao.executeHql("delete UserData"); // if(!Utils.changeDat2Xml(xmlPath)){ // map.put("flag", "false"); // map.put("msg", "HDFS文件转为xml失败"); // return map; // } // List<String[]> strings= Utils.parseXmlFolder2StrArr(xmlPath); // ---解析不使用xml解析,直接使用定制解析即可 //--- List<String[]>strings = Utils.parseDatFolder2StrArr(xmlPath); List<Object> uds = new ArrayList<Object>(); for(String[] s:strings){ uds.add(new UserData(s)); } int ret =baseDao.saveBatch(uds); log.info("用户表批量插入了{}条记录!",ret); }catch(Exception e){ e.printStackTrace(); map.put("flag", "false"); map.put("msg", e.getMessage()); return map; } map.put("flag", "true"); return map; }
public Integer saveBatch(List<Object> lists) { Session session = this.getCurrentSession(); // org.hibernate.Transaction tx = session.beginTransaction(); int i=0; try{ for ( Object l:lists) { i++; session.save(l); if( i % 50 == 0 ) { // Same as the JDBC batch size //flush a batch of inserts and release memory: session.flush(); session.clear(); if(i%1000==0){ System.out.println(new java.util.Date()+":已经预插入了"+i+"条记录..."); } } }}catch(Exception e){ e.printStackTrace(); } // tx.commit(); // session.close(); Utils.simpleLog("插入数据数为:"+i); return i; }
private static boolean db2hdfs(List<Object> list, Path path) throws IOException { boolean flag =false; int recordNum=0; SequenceFile.Writer writer = null; Configuration conf = getConf(); try { Option optPath = SequenceFile.Writer.file(path); Option optKey = SequenceFile.Writer .keyClass(IntWritable.class); Option optVal = SequenceFile.Writer.valueClass(DoubleArrIntWritable.class); writer = SequenceFile.createWriter(conf, optPath, optKey, optVal); DoubleArrIntWritable dVal = new DoubleArrIntWritable(); IntWritable dKey = new IntWritable(); for (Object user : list) { if(!checkUser(user)){ continue; // 不符合规则 } dVal.setValue(getDoubleArr(user),-1); dKey.set(getIntVal(user)); writer.append(dKey, dVal);// 用户id,<type,用户的有效向量 >// 后面执行分类的时候需要统一格式,所以这里需要反过来 recordNum++; } } catch (IOException e) { Utils.simpleLog("db2HDFS失败,+hdfs file:"+path.toString()); e.printStackTrace(); flag =false; throw e; } finally { IOUtils.closeStream(writer); } flag=true; Utils.simpleLog("db2HDFS 完成,hdfs file:"+path.toString()+",records:"+recordNum); return flag; }
public void map(IntWritable key,DoubleArrIntWritable value,Context cxt)throws InterruptedException,IOException{ cxt.getCounter(FilterCounter.MAP_COUNTER).increment(1L); if(cxt.getCounter(FilterCounter.MAP_COUNTER).getValue()%3000==0){ log.info("Map处理了{}条记录...",cxt.getCounter(FilterCounter.MAP_COUNTER).getValue()); log.info("Map生成了{}条记录...",cxt.getCounter(FilterCounter.MAP_OUT_COUNTER).getValue()); } Configuration conf = cxt.getConfiguration(); SequenceFile.Reader reader = null; FileStatus[] fss=input.getFileSystem(conf).listStatus(input); for(FileStatus f:fss){ if(!f.toString().contains("part")){ continue; // 排除其他文件 } try { reader = new SequenceFile.Reader(conf, Reader.file(f.getPath()), Reader.bufferSize(4096), Reader.start(0)); IntWritable dKey = (IntWritable) ReflectionUtils.newInstance( reader.getKeyClass(), conf); DoubleArrIntWritable dVal = (DoubleArrIntWritable) ReflectionUtils.newInstance( reader.getValueClass(), conf); while (reader.next(dKey, dVal)) {// 循环读取文件 // 当前IntWritable需要小于给定的dKey if(key.get()<dKey.get()){ cxt.getCounter(FilterCounter.MAP_OUT_COUNTER).increment(1L); double dis= HUtils.getDistance(value.getDoubleArr(), dVal.getDoubleArr()); newKey.set(dis); newValue.setValue(key.get(), dKey.get()); cxt.write(newKey, newValue); } } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeStream(reader); } } }Reducer的reduce函数直接输出:
public void reduce(DoubleWritable key,Iterable<IntPairWritable> values,Context cxt)throws InterruptedException,IOException{ for(IntPairWritable v:values){ cxt.getCounter(FilterCounter.REDUCE_COUNTER).increment(1); cxt.write(key, v); } }
/** * 根据给定的阈值百分比返回阈值 * * @param percent * 一般为1~2% * @return */ public static double findInitDC(double percent, String path,long iNPUT_RECORDS2) { Path input = null; if (path == null) { input = new Path(HUtils.getHDFSPath(HUtils.FILTER_CALDISTANCE + "/part-r-00000")); } else { input = new Path(HUtils.getHDFSPath(path + "/part-r-00000")); } Configuration conf = HUtils.getConf(); SequenceFile.Reader reader = null; long counter = 0; long percent_ = (long) (percent * iNPUT_RECORDS2); try { reader = new SequenceFile.Reader(conf, Reader.file(input), Reader.bufferSize(4096), Reader.start(0)); DoubleWritable dkey = (DoubleWritable) ReflectionUtils.newInstance( reader.getKeyClass(), conf); Writable dvalue = (Writable) ReflectionUtils.newInstance( reader.getValueClass(), conf); while (reader.next(dkey, dvalue)) {// 循环读取文件 counter++; if(counter%1000==0){ Utils.simpleLog("读取了"+counter+"条记录。。。"); } if (counter >= percent_) { HUtils.DELTA_DC = dkey.get();// 赋予最佳DC阈值 break; } } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeStream(reader); } return HUtils.DELTA_DC; }
/** * Find the local density of every point vector * * 输入为 <key,value>--> <distance,<id_i,id_j>> * <距离,<向量i编号,向量j编号>> * * Mapper: * 输出向量i编号,1 * 向量j编号,1 * Reducer: * 输出 * 向量i编号,局部密度 * 有些向量是没有局部密度的,当某个向量距离其他点的距离全部都大于给定阈值dc时就会发生 * @author fansy * @date 2015-7-3 */Mapper的逻辑如下:
/** * 输入为<距离d_ij,<向量i编号,向量j编号>> * 根据距离dc阈值判断距离d_ij是否小于dc,符合要求则 * 输出 * 向量i编号,1 * 向量j编号,1 * @author fansy * @date 2015-7-3 */map函数:
public void map(DoubleWritable key,IntPairWritable value,Context cxt)throws InterruptedException,IOException{ double distance= key.get(); if(method.equals("gaussian")){ one.set(Math.pow(Math.E, -(distance/dc)*(distance/dc))); } if(distance<dc){ vectorId.set(value.getFirst()); cxt.write(vectorId, one); vectorId.set(value.getSecond()); cxt.write(vectorId, one); } }这里的密度有两种计算方式,根据前台传入的参数选择不同的算法即可,这里默认使用的cut-off,即局部密度有一个点则局部密度加1;
public void reduce(IntWritable key, Iterable<DoubleWritable> values,Context cxt) throws IOException,InterruptedException{ double sum =0; for(DoubleWritable v:values){ sum+=v.get(); } sumAll.set(sum);// cxt.write(key, sumAll); Utils.simpleLog("vectorI:"+key.get()+",density:"+sumAll); }2)最小距离MR
/** * find delta distance of every point * 寻找大于自身密度的最小其他向量的距离 * mapper输入: * 输入为<距离d_ij,<向量i编号,向量j编号>> * 把LocalDensityJob的输出 * i,density_i * 放入一个map中,用于在mapper中进行判断两个局部密度的大小以决定是否输出 * mapper输出: * i,<density_i,min_distance_j> * IntWritable,DoublePairWritable * reducer 输出: * <density_i*min_distancd_j> <density_i,min_distance_j,i> * DoubleWritable, IntDoublePairWritable * @author fansy * @date 2015-7-3 */这里reducer输出为每个点(即每个用户)局部密度和最小距离的乘积,一种方式寻找聚类中心个数的方法就是把这个乘积从大到小排序,并把这些点画折线图,看其斜率变化最大的点,取前面点的个数即为聚类中心个数。
/** * */ package com.fz.fastcluster.keytype; /** * 自定义DoubleWritable * 修改其排序方式, * 从大到小排列 * @author fansy * @date 2015-7-3 */ import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; /** * Writable for Double values. */ @InterfaceAudience.Public @InterfaceStability.Stable public class CustomDoubleWritable implements WritableComparable<CustomDoubleWritable> { private double value = 0.0; public CustomDoubleWritable() { } public CustomDoubleWritable(double value) { set(value); } @Override public void readFields(DataInput in) throws IOException { value = in.readDouble(); } @Override public void write(DataOutput out) throws IOException { out.writeDouble(value); } public void set(double value) { this.value = value; } public double get() { return value; } /** * Returns true iff <code>o</code> is a DoubleWritable with the same value. */ @Override public boolean equals(Object o) { if (!(o instanceof CustomDoubleWritable)) { return false; } CustomDoubleWritable other = (CustomDoubleWritable)o; return this.value == other.value; } @Override public int hashCode() { return (int)Double.doubleToLongBits(value); } @Override public int compareTo(CustomDoubleWritable o) {// 修改这里即可 return (value < o.value ? 1 : (value == o.value ? 0 : -1)); } @Override public String toString() { return Double.toString(value); } /** A Comparator optimized for DoubleWritable. */ public static class Comparator extends WritableComparator { public Comparator() { super(CustomDoubleWritable.class); } @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { double thisValue = readDouble(b1, s1); double thatValue = readDouble(b2, s2); return (thisValue < thatValue ? 1 : (thisValue == thatValue ? 0 : -1)); } } static { // register this comparator WritableComparator.define(CustomDoubleWritable.class, new Comparator()); } }
/** * 根据给定的阈值寻找聚类中心向量,并写入hdfs * 非MR任务,不需要监控,注意返回值 */ public void center2hdfs(){ // localfile:method // 1. 读取SortJob的输出,获取前面k条记录中的大于局部密度和最小距离阈值的id; // 2. 根据id,找到每个id对应的记录; // 3. 把记录转为double[] ; // 4. 把向量写入hdfs // 5. 把向量写入本地文件中,方便后面的查看 Map<String,Object> retMap=new HashMap<String,Object>(); Map<Object,Object> firstK =null; List<Integer> ids= null; List<UserData> users=null; try{ firstK=HUtils.readSeq(input==null?HUtils.SORTOUTPUT+"/part-r-00000":input, 100);// 这里默认使用 前100条记录 ids=HUtils.getCentIds(firstK,numReducerDensity,numReducerDistance); // 2 users = dBService.getTableData("UserData",ids); Utils.simpleLog("聚类中心向量有"+users.size()+"个!"); // 3,4,5 HUtils.writecenter2hdfs(users,method,output); }catch(Exception e){ e.printStackTrace(); retMap.put("flag", "false"); retMap.put("msg", e.getMessage()); Utils.write2PrintWriter(JSON.toJSONString(retMap)); return ; } retMap.put("flag", "true"); Utils.write2PrintWriter(JSON.toJSONString(retMap)); return ; }写入HDFS和本地的聚类中心如下:
public void map(IntWritable key,DoubleArrIntWritable value,Context cxt){ double[] inputI= value.getDoubleArr(); // hdfs Configuration conf = cxt.getConfiguration(); FileSystem fs = null; Path path = null; SequenceFile.Reader reader = null; try { fs = FileSystem.get(conf); // read all before center files String parentFolder =null; double smallDistance = Double.MAX_VALUE; int smallDistanceType=-1; double distance; // if iter_i !=0,then start i with 1,else start with 0 for(int i=start;i<iter_i;i++){// all files are clustered points parentFolder=HUtils.CENTERPATH+"/iter_"+i+"/clustered"; RemoteIterator<LocatedFileStatus> files=fs.listFiles(new Path(parentFolder), false); while(files.hasNext()){ path = files.next().getPath(); if(!path.toString().contains("part")){ continue; // return } reader = new SequenceFile.Reader(conf, Reader.file(path), Reader.bufferSize(4096), Reader.start(0)); IntWritable dkey = (IntWritable) ReflectionUtils.newInstance( reader.getKeyClass(), conf); DoubleArrIntWritable dvalue = (DoubleArrIntWritable) ReflectionUtils.newInstance( reader.getValueClass(), conf); while (reader.next(dkey, dvalue)) {// read file literally distance = HUtils.getDistance(inputI, dvalue.getDoubleArr()); if(distance>dc){// not count the farest point continue; } // 这里只要找到离的最近的点并且其distance<=dc 即可,把这个点的type赋值给当前值即可 if(distance<smallDistance){ smallDistance=distance; smallDistanceType=dvalue.getIdentifier(); } }// while }// while }// for vectorI.set(key.get());// 用户id typeDoubleArr.setValue(inputI,smallDistanceType); if(smallDistanceType!=-1){ log.info("clustered-->vectorI:{},typeDoubleArr:{}",new Object[]{vectorI,typeDoubleArr.toString()}); cxt.getCounter(ClusterCounter.CLUSTERED).increment(1); out.write("clustered", vectorI, typeDoubleArr,"clustered/part"); }else{ log.info("unclustered---->vectorI:{},typeDoubleArr:{}",new Object[]{vectorI,typeDoubleArr.toString()}); cxt.getCounter(ClusterCounter.UNCLUSTERED).increment(1); out.write("unclustered", vectorI, typeDoubleArr,"unclustered/part"); } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeStream(reader); } }
public void run() { input=input==null?HUtils.FILTER_PREPAREVECTORS:input; // 删除iter_i(i>0)的所有文件 try { HUtils.clearCenter((output==null?HUtils.CENTERPATH:output)); } catch (FileNotFoundException e2) { e2.printStackTrace(); } catch (IOException e2) { e2.printStackTrace(); } output=output==null?HUtils.CENTERPATHPREFIX:output+"/iter_"; // 加一个操作,把/user/root/preparevectors里面的数据复制到/user/root/_center/iter_0/unclustered里面 HUtils.copy(input,output+"0/unclustered"); try { Thread.sleep(200);// 暂停200ms } catch (InterruptedException e1) { e1.printStackTrace(); } // 求解dc的阈值,这里的dc不用传入进来即可,即delta的值 // 阈值问题可以在讨论,这里暂时使用传进来的阈值即可 // double dc =dcs[0]; // 读取聚类中心文件 Map<Object,Object> vectorsMap= HUtils.readSeq(output+"0/clustered/part-m-00000", Integer.parseInt(k)); double[][] vectors = HUtils.getCenterVector(vectorsMap); double[] distances= Utils.getDistances(vectors); // 这里不使用传入进来的阈值 int iter_i=0; int ret=0; double tmpDelta=0; int kInt = Integer.parseInt(k); try { do{ if(iter_i>=distances.length){ // delta= String.valueOf(distances[distances.length-1]/2); // 这里使用什么方式还没有想好。。。 // 使用下面的方式 tmpDelta=Double.parseDouble(delta); while(kInt-->0){// 超过k次后就不再增大 tmpDelta*=2;// 每次翻倍 } delta=String.valueOf(tmpDelta); }else{ delta=String.valueOf(distances[iter_i]/2); } log.info("this is the {} iteration,with dc:{}",new Object[]{iter_i,delta}); String[] ar={ HUtils.getHDFSPath(output)+iter_i+"/unclustered", HUtils.getHDFSPath(output)+(iter_i+1),//output //HUtils.getHDFSPath(HUtils.CENTERPATHPREFIX)+iter_i+"/clustered/part-m-00000",//center file k, delta, String.valueOf((iter_i+1)) }; try{ ret = ToolRunner.run(HUtils.getConf(), new ClusterDataJob(), ar); if(ret!=0){ log.info("ClusterDataJob failed, with iteration {}",new Object[]{iter_i}); break; } }catch(Exception e){ e.printStackTrace(); } iter_i++; HUtils.JOBNUM++;// 每次循环后加1 }while(shouldRunNextIter()); } catch (IllegalArgumentException e) { e.printStackTrace(); } if(ret==0){ log.info("All cluster Job finished with iteration {}",new Object[]{iter_i}); } }
public void runCluster2(){ Map<String ,Object> map = new HashMap<String,Object>(); try { //提交一个Hadoop MR任务的基本流程 // 1. 设置提交时间阈值,并设置这组job的个数 //使用当前时间即可,当前时间往前10s,以防服务器和云平台时间相差 HUtils.setJobStartTime(System.currentTimeMillis()-10000);// // 由于不知道循环多少次完成,所以这里设置为2,每次循环都递增1 // 当所有循环完成的时候,就该值减去2即可停止监控部分的循环 HUtils.JOBNUM=2; // 2. 使用Thread的方式启动一组MR任务 new Thread(new RunCluster2(input, output,delta, record)).start(); // 3. 启动成功后,直接返回到监控,同时监控定时向后台获取数据,并在前台展示; map.put("flag", "true"); map.put("monitor", "true"); } catch (Exception e) { e.printStackTrace(); map.put("flag", "false"); map.put("monitor", "false"); map.put("msg", e.getMessage()); } Utils.write2PrintWriter(JSON.toJSONString(map)); }在MR任务循环结束后,重新设置JOBNUM的值即可控制监控的循环停止:
/** * 是否应该继续下次循环 * 直接使用分类记录数和未分类记录数来判断 * @throws IOException * @throws IllegalArgumentException */ private boolean shouldRunNextIter() { if(HUtils.UNCLUSTERED==0||HUtils.CLUSTERED==0){ HUtils.JOBNUM-=2;// 不用监控 则减去2; return false; } return true; }执行分类页面:
/** * 把分类的数据解析到list里面 * @param path * @return */ private static Collection<? extends UserGroup> resolve(Path path) { // TODO Auto-generated method stub List<UserGroup> list = new ArrayList<UserGroup>(); Configuration conf = HUtils.getConf(); SequenceFile.Reader reader = null; int i=0; try { reader = new SequenceFile.Reader(conf, Reader.file(path), Reader.bufferSize(4096), Reader.start(0)); IntWritable dkey = (IntWritable) ReflectionUtils .newInstance(reader.getKeyClass(), conf); DoubleArrIntWritable dvalue = (DoubleArrIntWritable) ReflectionUtils .newInstance(reader.getValueClass(), conf); while (reader.next(dkey, dvalue)) {// 循环读取文件 // 使用这个进行克隆 list.add(new UserGroup(i++,dkey.get(),dvalue.getIdentifier())); } } catch (Exception e) { e.printStackTrace(); } finally { IOUtils.closeStream(reader); } Utils.simpleLog("读取"+list.size()+"条记录,文件:"+path.toString()); return list; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/fansy1990/article/details/46943657