/*强连通分量分解 tarjan算法 (hdu 1269) 题意: 给出一个有n个点m条边的有向图,判断该图是否只有一个强连通分量。 限制: 0 <= N <= 10000 0 <= M <= 100000 */ #include<iostream> #include<cstdio> #include<stack> #include<vector> #include<cstring> using namespace std; const int MAX_V = 1e5+5; #define PB push_back vector<int> G[MAX_V]; stack<int> tarjan_stack; int DFN[MAX_V], LOW[MAX_V]; int tarjan_set[MAX_V]; bool in_stack[MAX_V]; int scc_cnt, tarjan_cnt; void tarjan(int u){ DFN[u] = LOW[u] = ++tarjan_cnt; tarjan_stack.push(u); in_stack[u] = true; for(int i = 0; i < G[u].size(); ++i){ int ch = G[u][i]; if(!DFN[ch]){ tarjan(ch); LOW[u] = min(LOW[u], LOW[ch]); } else if(in_stack[ch]){ LOW[u] = min(LOW[u], DFN[ch]); } } if(DFN[u] == LOW[u]){ int tmp; ++scc_cnt; do{ tmp = tarjan_stack.top(); tarjan_stack.pop(); in_stack[tmp] = false; tarjan_set[tmp] = scc_cnt; } while(tmp != u); } } void add_edge(int u,int v){ G[u].PB(v); } void init_tarjan(int n){ scc_cnt = tarjan_cnt = 0; memset(DFN, 0, sizeof(DFN)); memset(LOW, 0, sizeof(LOW)); memset(in_stack, 0, sizeof(in_stack)); memset(tarjan_set, 0, sizeof(tarjan_set)); for(int i = 0; i <= n; ++i) G[i].clear(); } //点的序号从0开始 void gao(int n){ for(int i = 0; i < n; ++i){ if(!DFN[i]) tarjan(i); } for(int i = 1; i < n; ++i){ if(tarjan_set[i] != tarjan_set[i-1]){ puts("No"); return ; } } puts("Yes"); } int main(){ int n, m; while(scanf("%d%d", &n, &m) && (n || m)){ init_tarjan(n); for(int i = 0; i < m; ++i){ int u, v; scanf("%d%d", &u, &v); add_edge(u-1, v-1); } gao(n); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/whai362/article/details/46968151