转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46987951
写出高效代码的两条基本的原则:(1)不要做不必要的事;(2)不要分配不必要的内存。
Android系统对每个软件所能使用的RAM空间进行了限制(如:Nexus one 对每个软件的内存限制是24M),同时Java语言本身比较消耗内存,dalvik虚拟机也要占用一定的内存空间,所以合理使用内存,彰显出一个程序员的素质和技能。
即时编译(Just-in-time Compilation,JIT),又称动态转译(Dynamic Translation),是一种通过在运行时将字节码翻译为机器码,从而改善字节码编译语言性能的技术。即时编译前期的两个运行时理论是字节码编译和动态编译。Android原来Dalvik虚拟机是作为一种解释器实现,新版(Android2.2+)将换成JIT编译器实现。性能测试显示,在多项测试中新版本比旧版本提升了大约6倍。
就像世界上没有免费的午餐,世界上也没有免费的对象。虽然gc为每个线程都建立了临时对象池,可以使创建对象的代价变得小一些,但是分配内存永远都比不分配内存的代价大。如果你在用户界面循环中分配对象内存,就会引发周期性的垃圾回收,用户就会觉得界面像打嗝一样一顿一顿的。所以,除非必要,应尽量避免尽力对象的实例。下面的例子将帮助你理解这条原则:当你从用户输入的数据中截取一段字符串时,尽量使用substring函数取得原始数据的一个子串,而不是为子串另外建立一份拷贝。这样你就有一 个新的String对象,它与原始数据共享一个char数组。
如果你有一个函数返回一个String对象,而你确切的知道这个字符串会被附加到一个StringBuffer,那么,请改变这个函数的参数和实现方式,直接把结果附加到StringBuffer中,而不要再建立一个短命的临时对象。
一个更极端的例子是,把多维数组分成多个一维数组:
int数组比Integer数组好,这也概括了一个基本事实,两个平行的int数组比 (int,int)对象数组性能要好很多。同理,这试用于所有基本类型的组合。如果你想用一种容器存储(Foo,Bar)元组,尝试使用两个单独的 Foo[]数组和Bar[]数组,一定比(Foo,Bar)数组效率更高。(也有例外的情况,就是当你建立一个API,让别人调用它的时候。这时候你要注重对API接口的设计而牺牲一点儿速度。当然在API的内部,你仍要尽可能的提高代码的效率)
总体来说,就是避免创建短命的临时对象。减少对象的创建就能减少垃圾收集,进而减少对用户体验的影响。
如果不需要访问某对象的字段,将方法设置为静态,调用会加速15%到20%。这也是一种好的做法,因为你可以从方法声明中看出调用该方法不需要更新此对象的状态。
在源生语言像C++中,通常做法是用Getters(i=getCount())代替直接字段访问(i=mCount)。这是C++中一个好的习惯,因为编译器会内联这些访问,并且如果需要约束或者调试这些域的访问,你可以在任何时间添加代码。而在Android中,这不是一个好的做法。虚方法调用的代价比直接字段访问高昂许多。通常根据面向对象语言的实践,在公共接口中使用Getters和Setters是有道理的,但在一个字段经常被访问的类中宜采用直接访问。无JIT时,直接字段访问大约比调用getter访问快3倍。有JIT时(直接访问字段开销等同于局部变量访问),要快7倍。
访问成员变量比访问本地变量慢得多,下面一段代码:
for(int i =0; i <this.mCount; i++) { dumpItem(this.mItems); }最好改成这样:
int count = this.mCount; Item[] items = this.mItems; for(int i =0; i < count; i++) { dumpItems(items); }另一个相似的原则是:永远不要在for的第二个条件中调用任何方法。如下面方法所示,在每次循环的时候都会调用getCount()方法,这样做比你在一个int先把结果保存起来开销大很多。另一个相似的原则是:永远不要在for的第二个条件中调用任何方法。如下面方法所示,在每次循环的时候都会调用getCount()方法,这样做比你在一个int先把结果保存起来开销大很多。
for(int i =0; i < this.getCount(); i++) { dumpItems(this.getItem(i)); }同样如果你要多次访问一个变量,也最好先为它建立一个本地变量,例如:
protected void drawHorizontalScrollBar(Canvas canvas, int width, int height) { if(isHorizontalScrollBarEnabled()) { intsize = mScrollBar.getSize(false); if(size <=0) { size = mScrollBarSize; } mScrollBar.setBounds(0, height - size, width, height); mScrollBar.setParams(computeHorizontalScrollRange(), computeHorizontalScrollOffset(), computeHorizontalScrollExtent(),false); mScrollBar.draw(canvas); } }这里有4次访问成员变量mScrollBar,如果将它缓存到本地,4次成员变量访问就会变成4次效率更高的栈变量访问。
另外就是方法的参数与本地变量的效率相同。
让我们来看看这两段在类前面的声明:
static int intVal = 42; static String strVal = "Hello, world!";必以其会生成一个叫做clinit的初始化类的方法,当类第一次被使用的时候这个方法会被执行。方法会将42赋给intVal,然后把一个指向类中常量表 的引用赋给strVal。当以后要用到这些值的时候,会在成员变量表中查找到他们。 下面我们做些改进,使用“final”关键字:
static final int intVal = 42; static final String strVal = "Hello, world!";现在,类不再需要clinit方法,因为在成员变量初始化的时候,会将常量直接保存到类文件中。用到intVal的代码被直接替换成42,而使用strVal的会指向一个字符串常量,而不是使用成员变量。
改进for循环(有时被称为for-each循环)能够用于实现了iterable接口的集合类及数组中。在集合类中,迭代器让接口调用 hasNext()和next()方法。在ArrayList中,手写的计数循环迭代要快3倍(无论有没有JIT),但其他集合类中,改进的for循环语 法和迭代器具有相同的效率。下面展示集中访问数组的方法:
static class Foo { int mSplat; } Foo[] mArray = ... public void zero() { int sum = 0; for (int i = 0; i < mArray.length; ++i) { sum += mArray[i].mSplat; } } public void one() { int sum = 0; Foo[] localArray = mArray; int len = localArray.length; for (int i = 0; i < len; ++i) { sum += localArray[i].mSplat; } } public void two() { int sum = 0; for (Foo a : mArray) { sum += a.mSplat; } } }在zero()中,每次循环都会访问两次静态成员变量,取得一次数组的长度。
通常的经验是,在Android设备中,浮点数会比整型慢两倍,在缺少FPU和JIT的G1上对比有FPU和JIT的Nexus One中确实如此(两种设备间算术运算的绝对速度差大约是10倍)从速度方面说,在现代硬件上,float和double之间没有任何不同。更广泛的讲,double大2倍。在台式机上,由于不存在空间问题,double的优先级高于float。但即使是整型,有的芯片拥有硬件乘法,却缺少除法。这种情况下,整型除法和求模运算是通过软件实现的,就像当你设计Hash表,或是做大量的算术那样,例如a/2可以换成a*0.5。
选择Library中的代码而非自己重写,除了通常的那些原因外,考虑到系统空闲时会用汇编代码调用来替代library方法,这可能比JIT中生成的等价的最好的Java代码还要好。
i. 当你在处理字串的时候,不要吝惜使用String.indexOf(),String.lastIndexOf()等特殊实现的方法。这些方法都是使用C/C++实现的,比起Java循环快10到100倍。
ii.System.arraycopy方法在有JIT的Nexus One上,自行编码的循环快9倍。
iii.android.text.format包下的Formatter类,提供了IP地址转换、文件大小转换等方法;DateFormat类,提供了各种时间转换,都是非常高效的方法。
详细请参考 http://developer.android.com/reference/android/text/format/package-summary.html
iv.TextUtils类
对于字符串处理Android为我们提供了一个简单实用的TextUtils类,如果处理比较简单的内容不用去思考正则表达式不妨试试这个在android.text.TextUtils的类,详细请参考http://developer.android.com/reference/android/text/TextUtils.html
v. 高性能MemoryFile类。
很多人抱怨Android处理底层I/O性能不是很理想,如果不想使用NDK则可以通过MemoryFile类实现高性能的文件读写操作。MemoryFile适用于哪些地方呢?对于I/O需要频繁操作的,主要是和外部存储相关的I/O操作,MemoryFile通过将 NAND或SD卡上的文件,分段映射到内存中进行修改处理,这样就用高速的RAM代替了ROM或SD卡,性能自然提高不少,对于Android手机而言同时还减少了电量消耗。该类实现的功能不是很多,直接从Object上继承,通过JNI的方式直接在C底层执行。
详细请参考 http://developer.android.com/reference/android/os/MemoryFile.html
在此,只简单列举几个常用的类和方法,更多的是要靠平时的积累和发现。多阅读Google给的帮助文档时很有益的。
本地方法并不是一定比Java高效。最起码,Java和native之间过渡的关联是有消耗的,而JIT并不能对此进行优化。当你分配本地资源时 (本地堆上的内存,文件说明符等),往往很难实时的回收这些资源。同时你也需要在各种结构中编译你的代码(而非依赖JIT)。甚至可能需要针对相同的架构 来编译出不同的版本:针对ARM处理器的GI编译的本地代码,并不能充分利用Nexus One上的ARM,而针对Nexus One上ARM编译的本地代码不能在G1的ARM上运行。当你想部署程序到存在本地代码库的Android平台上时,本地代码才显得尤为有用,而并非为了Java应用程序的提速。
复杂算法尽量用C或者C++完成,然后用JNI调用。但是如果是算法比较单间,不必这么麻烦,毕竟JNI调用也会花一定的时间。请权衡。
尽量避免static成员变量引用资源耗费过多的实例,比如Context。Android提供了很健全的消息传递机制(Intent)和任务模型(Handler),可以通过传递或事件的方式,防止一些不必要的全局变量。
Java的gc使用的是一个有向图,判断一个对象是否有效看的是其他的对象能到达这个对象的顶点,有向图的相对于链表、二叉树来说开销是可想而知。所以不要过多指望gc。将不用的对象可以把它指向NULL,并注意代码质量。同时,显示让系统gc回收,例如图片处理时,
if(bitmap.isRecycled()==false) { //如果没有回收 bitmap.recycle(); }
JDK 1.2版本开始,把对象的引用分为4种级别,从而使程序能更加灵活地控制对象的生命周期。这4种级别由高到低依次为:强引用、软引用、弱引用和虚引用。
i.强引用(StrongReference)
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。
ii.软引用(SoftReference)
如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
iii.弱引用(WeakReference)
在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
iv.虚引用(PhantomReference)
顾名思义,就是形同虚设。与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。了解并熟练掌握这4中引用方式,选择合适的对象应用方式,对内存的回收是很有帮助的
假设你有一个HashMap对象,你可以将它声明为HashMap或者Map:
Map map1 = new HashMap(); HashMap map2 = new HashMap();哪个更好呢?
枚举变量非常方便,但不幸的是它会牺牲执行的速度和并大幅增加文件体积。例如:
public class Foo { public enum Shrubbery { GROUND, CRAWLING, HANGING } }会产生一个900字节的.class文件(FooShubbery.class)。在它被首次调用时,这个类会调用初始化方法来准备每个枚举变量。每个枚举项都会被声明成一个静态变量,并被赋值。然后将这些静态变量放在一个名为”VALUES”的静态数组变量中。而这么一大堆代码,仅仅是为了使用三个整数。
for(int n =0; n < list.size(); n++) { if(list.items[n].e == MyEnum.VAL_X) { // do something } else if(list.items[n].e == MyEnum.VAL_Y) { // do something } }替换为:
int valX = MyEnum.VAL_X.ordinal(); int valY = MyEnum.VAL_Y.ordinal(); int count = list.size(); MyItem items = list.items(); for(int n =0; n < count; n++) { intvalItem = items[n].e.ordinal(); if(valItem == valX) { // do something } else if(valItem == valY) { // do something } }会使性能得到一些改善,但这并不是最终的解决之道。
public class Foo { public class Inner { public void stuff() { Foo.this.doStuff(Foo.this.mValue); } } private int mValue; public void run() { Inner in = new Inner(); mValue = 27; in.stuff(); } private void doStuff(int value) { System.out.println("value:"+value); } }需要注意的关键是:我们定义的一个私有内部类(FooInner),直接访问外部类中的一个私有方法和私有变量。这是合法的,代码也会打印出预期的“Valueis27”。但问题是,虚拟机认为从FooInner中直接访问Foo的私有成员是非法的,因为他们是两个不同的类,尽管Java语言允许内部类访问外部类的私有成员,但是通过编译器生成几个综合方法来桥接这些间隙的
/*package*/ static int Foo.access$100(Foo foo) { return foo.mValue; } /*package*/ static void Foo.access%200(Foo foo,int value) { foo.duStuff(value); }内部类会在外部类中任何需要访问mValue字段或调用doStuff方法的地方调用这些静态方法。这意味着这些代码将直接存取成员变量表现为通过存取器方法访问。之前提到过存取器访问如何比直接访问慢,这例子说明,某些语言约会定导致不可见的性能问题。如果你在高性能的Hotspot中使用这些代码,可以通过声明被内部类访问的字段和成员为包访问权限,而非私有。但这也意味着这些字段会被其他处于同一个包中的类访问,因此在公共API中不宜采用。
请看下面的类定义:
public class Foo { private class Inner { void stuff() { Foo.this.doStuff(Foo.this.mValue); } } private int mValue; public void run() { Inner in = new Inner(); mValue = 27; in.stuff(); } private void doStuff(int value) { System.out.println("Value is " + value); } }这其中的关键是,我们定义了一个内部类(FooInner),它需要访问外部类的私有域变量和函数。这是合法的,并且会打印出我们希望的结果Valueis27。问题是在技术上来讲(在幕后)FooInner是一个完全独立的类,它要直接访问Foo的私有成员是非法的。要跨越这个鸿沟,编译器需要生成一组方法
/*package*/ static int Foo.access$100(Foo foo) { return foo.mValue; } /*package*/ static void Foo.access$200(Foo foo, int value) { foo.doStuff(value); }内部类在每次访问mValueg和gdoStuffg方法时,都会调用这些静态方法。就是说,上面的代码说明了一个问题,你是在通过接口方法访问这些成员变量和函数而不是直接调用它们。在前面我们已经说过,使用接口方法(getter、setter)比直接访问速度要慢。所以这个例子就是在特定语法下面产生的一个“隐性的”性能障碍。通过将内部类访问的变量和函数声明由私有范围改为包范围,我们可以避免这个问题。这样做可以让代码运行更快,并且避免产生额外的静态方法。(遗憾的是,这些域和方法可以被同一个包内的其他类直接访问,这与经典的OO原则相违背。因此当你设计公共API的时候应该谨慎使用这条优化原则)。
适量使用缓存,不要过量使用,因为内存有限,能保存路径地址的就不要存放图片数据,不经常使用的尽量不要缓存,不用时就清空。
对SQLiteOpenHelper,SQLiteDatabase,Cursor,文件,I/O操作等都应该记得显示关闭。
i. 减少不必要的View以及View的嵌套层次。
比如实现一个listview中常用的layout,可以使用RelativeLayout减少嵌套,要知道每个View的对象会耗费1~2k内存,嵌套层次过多会引起频繁的gc,造成ANR。
ii. 通过HierarchyViewer查看布局结构
利用HierarchyViewer来查看View的结构:~/tools/hierarchyviewer,能很清楚地看到RelativeLayout下面的扁平结构,这样能加快dom的渲染速度。
详细请参考
http://developer.android.com/guide/developing/tools/hierarchy-viewer.html
iii. 通过Layoutopt优化布局
通过Android sdk中tools目录下的layoutopt 命令查看你的布局是否需要优化
占用CPU较多的数据操作尽可能放在一个单独的线程中进行,通过handler等方式把执行的结果交于UI线程显示。特别是针对的网络访问,数据库查询,和复杂的算法。目前Android提供了AsyncTask,Hanlder、Message和Thread的组合。对于多线程的处理,如果并发的线程很多,同时有频繁的创建和释放,可以通过concurrent类的线程池解决线程创建的效率瓶颈。另外值得注意的是,应用开发中自定义View的时候,交互部分,千万不要写成线程不断刷新界面显示,而是根据TouchListener事件主动触发界面的更新。
一般情况下对于Android程序布局往往使用XML文件来编写,这样可以提高开发效率,但是考虑到代码的安全性以及执行效率,可以通过Java代码执行创建,虽然Android编译过的XML是二进制的,但是加载XML解析器的效率对于资源占用还是比较大的,Java处理效率比XML快得多,但是对于一个复杂界面的编写,可能需要一些套嵌考虑,如果你思维灵活的话,使用Java代码来布局你的Android应用程序是一个更好的方法。
图片读取是OOM(Out of Memory)的常客,当在Android手机上直接读取4M的图片时,死神一般都会降临,所以导致往往自己手机拍摄的照片都不能直接读取。对大型图片进行缩放处理图片时我们经常会用到BitmapFactory类,android系统中读取位图Bitmap时分给虚拟机中图片的堆栈大小只有8M。用BitmapFactory解码一张图片时,有时也会遇到该错误。这往往是由于图片过大造成的。这时我们需要分配更少的内存空间来存储。BitmapFactory.Options.inSampleSize设置恰当的inSampleSize可以使BitmapFactory分配更少的空间以消除该错误。Android提供了一种动态计算的,如下:
读取图片之前先查看其大小:
BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inJustDecodeBounds = true; Bitmap bitmap = BitmapFactory.decodeFile(imageFile, opts);使用得到的图片原始宽高计算适合自己的smaplesize
BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inSampleSize = 4 ;// 4就代表容量变为以前容量的1/4 Bitmap bitmap = BitmapFactory.decodeFile(imageFile, opts);对于过时的Bitmap对象一定要及时recycle,并且把此对象赋值为null。
bitmap.recycle(); bitmap = null;
ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当ViewStub可见,或者调用 inflate()函数时,才会加载这个布局资源文件。 该ViewStub在加载视图时在父容器中替换它本身。因此,ViewStub会一直存在于视图中,直到调用setVisibility(int) 或者inflate()为止。ViewStub的布局参数会随着加载的视图数一同被添加到ViewStub父容器。同样,你也可以通过使用 inflatedId属性来定义或重命名要加载的视图对象的Id值。所以我们可以使用ViewStub延迟加载某些比较复杂的layout,动态加载
View,采用ViewStub 避免一些不经常的视图长期握住引用。
详细请参考http://developer.android.com/reference/android/view/ViewStub.html
i. 复用convertView。
ii.在getItemView中,判断convertView是否为空,如果不为空,可复用。如果couvertview中的view需要添加 listerner,代码一定要在if(convertView==null){}之外。
iii.异步加载图片,item中如果包含有web image,那么最好异步加载。
iv.快速滑动时不显示图片
当快速滑动列表时(SCROLL_STATE_FLING),item中的图片或获取需要消耗资源的view,可以不显示出来;而处于其他两种状 态(SCROLL_STATE_IDLE 和SCROLL_STATE_TOUCH_SCROLL),则将那些view显示出来。
v. item尽可能的减少使用的控件和布局的层次;背景色与cacheColorHint设置相同颜色;ListView中item的布局至关重要,必须尽可 能的减少使用的控件,布局。RelativeLayout是绝对的利器,通过它可以减少布局的层次。同时要尽可能的复用控件,这样可以减少ListView的内存使用,减少滑动时gc次数。ListView的背景色与cacheColorHint设置相同颜色,可以提高滑动时的渲染性能。
vi. getView优化
ListView中getView是性能是关键,这里要尽可能的优化。getView方法中要重用view;getView方法中不能做复杂的逻辑计算,特别是数据库和网络访问操作,否则会严重影响滑动时的性能。优化如下所示:
@Override public View getView(int position, View convertView, ViewGroup parent) { Log.d("MyAdapter", "Position:" + position + "---" + String.valueOf(System.currentTimeMillis())); final LayoutInflater inflater = (LayoutInflater) mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE); View v = inflater.inflate(R.layout.list_item_icon_text, null); ((ImageView) v.findViewById(R.id.icon)).setImageResource(R.drawable.icon); ((TextView) v.findViewById(R.id.text)).setText(mData[position]); return v; }建议改为:
@Override public View getView(int position, View convertView, ViewGroup parent) { Log.d("Adapter", "Position:" + position + " : " + String.valueOf(System.currentTimeMillis())); ViewHolder holder; if (convertView == null) { final LayoutInflater inflater = (LayoutInflater) mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE); convertView = inflater.inflate(R.layout.list_item_icon_text, null); holder = new ViewHolder(); holder.icon = (ImageView) convertView.findViewById(R.id.icon); holder.text = (TextView) convertView.findViewById(R.id.text); convertView.setTag(holder); } else { holder = (ViewHolder) convertView.getTag(); } holder.icon.setImageResource(R.drawable.icon); holder.text.setText(mData[position]); return convertView; } static class ViewHolder { ImageView icon; TextView text; } }以上是Google IO大会上给出的优化建议,经过尝试ListView确实流畅了许多。使用1000条记录,经测试第一种方式耗时:25211ms,第二种方式耗时:16528ms。
i.分辨率适配
-ldpi,-mdpi, -hdpi配置不同精度资源,系统会根据设备自适应,包括drawable, layout,style等不同资源。
ii.尽量使用dp(density independent pixel)开发,不用px(pixel)。
iii.多用wrap_content, fill_parent
iv.抛弃AbsoluteLayout
v.使用9patch(通过~/tools/draw9patch.bat启动应用程序),png格式
vi.采用<merge> 优化布局层数;采用<include >来共享布局。
vii. 将Acitivity中的Window的背景图设置为空。getWindow().setBackgroundDrawable(null);android的默认背景是不是为空。
viii.View中设置缓存属性.setDrawingCache为true。
访问server端时,建立连接本身比传输需要跟多的时间,如非必要,不要将一交互可以做的事情分成多次交互(这需要与Server端协调好)。有效管理Service 后台服务就相当于一个持续运行的Acitivity,如果开发的程序后台都会一个service不停的去服务器上更新数据,在不更新数据的时候就让它sleep,这种方式是非常耗电的,通常情况下,可以使用AlarmManager来定时启动服务。如下所示,第30分钟执行一次。
AlarmManager alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE); Intent intent = new Intent(context, MyService.class); PendingIntent pendingIntent = PendingIntent.getService(context, 0, intent, 0); long interval = DateUtils.MINUTE_IN_MILLIS * 30; long firstWake = System.currentTimeMillis() + interval; am.setRepeating(AlarmManager.RTC,firstWake, interval, pendingIntent);
传输数据经过压缩 目前大部门网站都支持GZIP压缩,所以在进行大数据量下载时,尽量使用GZIP方式下载,可以减少网络流量,一般是压缩前数据大小的30%左右。
HttpGet request = new HttpGet("http://example.com/gzipcontent"); HttpResponse resp = new DefaultHttpClient().execute(request); HttpEntity entity = response.getEntity(); InputStream compressed = entity.getContent(); InputStream rawData = new GZIPInputStream(compressed);
线程池,分为核心线程池和普通线程池,下载图片等耗时任务放置在普通线程池,避免耗时任务阻塞线程池后,导致所有异步任务都必须等待。
其中Tree Parse 是DOM解析 Event/Stream是SAX方式解析。
很明显,使用流的方式解析效率要高一些,因为DOM解析是在对整个文档读取完后,再根据节点层次等再组织起来。而流的方式是边读取数据边解析,数据读取完后,解析也就完毕了。在数据格式方面,JSON和Protobuf效率明显比XML好很多,XML和JSON大家都很熟悉。从上面的图中可以得出结论就是尽量使用SAX等边读取边解析的方式来解析数据,针对移动设备,最好能使用JSON之类的轻量级数据格式为佳。
设置连接超时时间和响应超时时间。Http请求按照业务需求,分为是否可以缓存和不可缓存,那么在无网络的环境中,仍然通过缓存的HttpResponse浏览部分数据,实现离线阅读。
对于Android平台上软件的性能测试可以通过以下几种方法来分析效率瓶颈,目前Google在Android软件开发过程中已经引入了多种测试工具包,比如Unit测试工程,调试类,还有模拟器的Dev Tools都可以直接反应执行性能。
long start = System.currentTimeMillis(); // do something long duration = System.currentTimeMillis() - start;最终duration保存着实际处理该方法需要的毫秒数。
如果你执行的应用比较简单,可以在DDMS中查看下Logcat的VM释放内存情况,大概模拟下那些地方可以缓存数据或改进算法的。
Android平台上给我们提供了丰富的多任务同步方法,但在深层上并没有过多的比如自旋锁等高级应用,不 过对于Service和 appWidget而言,他们实际的产品中都应该以多线程的方式处理,以释放CPU时间,对于线程和堆内存的查看这些都可以在DDMS中看到。
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/l1028386804/article/details/46987951