标签:
harris 最常用作特征检测算法。
第一个文件harris.py
<pre name="code" class="python">from scipy.ndimage import filters from numpy import * from pylab import * def compute_harris_response(im,sigma=3): imx=zeros(im.shape)#计算导数 filters.gaussian_filter(im,(sigma,sigma),(0,1),imx) imy=zeros(im.shape) filters.gaussian_filter(im,(sigma,sigma),(1,0),imy) Wxx=filters.gaussian_filter(imx*imx,sigma) #计算harris矩阵分量 Wxy=filters.gaussian_filter(imx*imy,sigma) Wyy=filters.gaussian_filter(imy*imy,sigma) Wdet=Wxx*Wyy-Wxy**2 #计算矩阵的特征值和迹 Wtr=Wxx+Wyy return Wdet/Wtr def get_harris_points(harrisim,min_dist=10,threshold=0.1): conner_threshold=harrisim.max()*threshold harrisim_t=(harrisim>conner_threshold)*1 coords=array(harrisim_t.nonzero()).T candidate_values=[harrisim[c[0],c[1]] for c in coords] index=argsort(candidate_values) allowed_locations=zeros(harrisim.shape) allowed_locations[min_dist:-min_dist,min_dist:-min_dist]=1 filtered_coords=[] for i in index: if allowed_locations[coords[i,0],coords[i,1]]==1: filtered_coords.append(coords[i]) allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0#此处保证min_dist*min_dist仅仅有一个harris特征点 return filtered_coords def plot_harris_points(image,filtered_coords): figure() gray() imshow(image) plot([p[1] for p in filtered_coords],[p[0]for p in filtered_coords],'+') axis('off') show()
from PIL import Image from numpy import * import harris from pylab import * from scipy.ndimage import filters im=array(Image.open('33.jpg').convert('L')) harrisim=harris.compute_harris_response(im) filtered_coords=harris.get_harris_points(harrisim) harris.plot_harris_points(im,filtered_coords)
版权声明:本文博客原创文章,博客,未经同意,不得转载。
标签:
原文地址:http://www.cnblogs.com/bhlsheji/p/4667745.html