标签:
1 package iYou.neugle.graph; 2 3 import java.util.Set; 4 import java.util.TreeSet; 5 6 //创建图过程的代码在图的那篇博文中,此处直接使用 7 public class Kruskal { 8 private MyGraph1 graph; 9 private int[] a;// 并查集使用数组(存储前置节点) 10 private Set<Edge> edgeSet = new TreeSet<>();// 边的集合按w的升序排序 11 12 class Edge implements Comparable<Object> { 13 public int start;// 开始边 14 public int end;// 结束边 15 public int w;// 权值 16 17 // 将边的集合进行w的升序排序 18 @Override 19 public int compareTo(Object o) { 20 if (o instanceof Edge) { 21 Edge edge = (Edge) o; 22 if (this.w >= edge.w) { 23 return 1; 24 } else { 25 return -1; 26 } 27 } 28 return 0; 29 } 30 } 31 32 // 并查集 33 // 首先初始化各个节点 34 private void MakeSet(int n) { 35 for (int i = 0; i < n; i++) { 36 a[i] = i; 37 } 38 } 39 40 // 查找根节点 41 private int Find(int n) { 42 if (a[n] == n) { 43 return n; 44 } else { 45 return Find(a[n]); 46 } 47 } 48 49 // 合并节点 50 private void UnionSet(int x, int y) { 51 if (a[x] != a[y]) { 52 a[this.Find(y)] = this.Find(x); 53 } 54 } 55 56 public Kruskal(MyGraph1 graph) { 57 this.graph = graph; 58 a = new int[this.graph.getGraph().maxNum]; 59 } 60 61 // 初始化edgeSet集合 62 private void Init() { 63 // 如果为无向图 64 if (this.graph.getGraph().type == 0) { 65 for (int i = 0; i < this.graph.getGraph().maxNum; i++) { 66 for (int j = 0; j < i; j++) { 67 Function(j, i); 68 } 69 } 70 } 71 // 如果为有向图 72 else { 73 for (int i = 0; i < this.graph.getGraph().maxNum; i++) { 74 for (int j = 0; j < this.graph.getGraph().maxNum; j++) { 75 Function(i, j); 76 } 77 } 78 } 79 } 80 81 // 功能函数 82 private void Function(int i, int j) { 83 int w = this.graph.getGraph().edge[i][j]; 84 if (w != 0) { 85 Edge edge = new Edge(); 86 edge.start = i; 87 edge.end = j; 88 edge.w = w; 89 this.edgeSet.add(edge); 90 } 91 } 92 93 public void KruskalCore() { 94 this.Init(); 95 int maxNum = this.graph.getGraph().maxNum; 96 // 初始化a 97 this.MakeSet(maxNum); 98 Edge[] edgeArr = this.edgeSet.toArray(new Edge[] {}); 99 int sum = edgeArr[0].w; 100 // 合并一条边的两个节点 101 this.UnionSet(edgeArr[0].start, edgeArr[0].end); 102 System.out.println("最小生成树为--------"); 103 System.out 104 .println((edgeArr[0].start + 1) + "->" + (edgeArr[0].end + 1)); 105 // 通过并查集进行判断是否该条边生成回路 106 int n = 1; 107 for (int i = 1; i < edgeArr.length && n < maxNum; i++) { 108 if (this.Find(edgeArr[i].start) != this.Find(edgeArr[i].end)) { 109 this.UnionSet(edgeArr[i].start, edgeArr[i].end); 110 System.out.println((edgeArr[i].start + 1) + "->" 111 + (edgeArr[i].end + 1)); 112 sum += edgeArr[i].w; 113 } 114 n++; 115 } 116 System.out.println("----------------"); 117 System.out.println("最小生成树的权值为: " + sum); 118 } 119 120 public static void main(String[] args) { 121 MyGraph1 graph = new MyGraph1(5, 0); 122 graph.CreateMaxtrixGraph(1, 2, 2); 123 graph.CreateMaxtrixGraph(1, 3, 5); 124 graph.CreateMaxtrixGraph(1, 5, 3); 125 graph.CreateMaxtrixGraph(2, 4, 4); 126 graph.CreateMaxtrixGraph(3, 5, 5); 127 graph.CreateMaxtrixGraph(4, 5, 2); 128 graph.OutPutMaxtrixGraph(); 129 Kruskal kruskal = new Kruskal(graph); 130 kruskal.KruskalCore(); 131 } 132 }
1 2 3 4 5 1 0 2 5 0 3 2 2 0 0 4 0 3 5 0 0 0 5 4 0 4 0 0 2 5 3 0 5 2 0 最小生成树为-------- 1->2 4->5 1->5 1->3 ---------------- 最小生成树的权值为: 12
java数据结构和算法------图(最小生成树Kruskal)
标签:
原文地址:http://www.cnblogs.com/niuxiaoha/p/4670944.html