目前Android平台上进行人脸特征识别非常火爆,本人研究生期间一直从事人脸特征的处理,所以曾经用过一段ASM(主动形状模型)提取人脸基础特征点,所以这里采用JNI的方式将ASM在Android平台上进行了实现,同时在本应用实例中,给出了几个其他的图像处理的示例。
由于ASM (主动形状模型,Active Shape Model)的核心算法比较复杂,所以这里不进行算法介绍,我之前写过一篇详细的算法介绍和公式推导,有兴趣的朋友可以参考下面的连接:
ASM(主动形状模型)算法详解
接下来介绍本应用的实现。
首先,给出本应用的项目源码:
Android ASM Demo
在这个项目源码的README中详细介绍了怎么配置运行时环境,请仔细阅读。
本项目即用到了Android JNI开发,又用到了Opencv4Android,所以,配置起来还是很复杂的。Android JNI开发配置请参考:Android JNI,Android 上使用Opencv请参考:Android Opencv
整个应用的代码比较多,所以如果想很好的了解项目原理,最好还是将代码下载下来仔细看看。
首先给出本地cpp代码,下面的本地cpp代码负责调用stasm提供的c语言接口:
#include <jni.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <android/log.h>
#include <opencv2/opencv.hpp>
#include "./stasm/stasm_lib.h"
using namespace cv;
using namespace std;
CascadeClassifier cascade;
bool init = false;
const String APP_DIR = "/data/data/com.example.asm/app_data/";
extern "C" {
/*
* do Canny edge detect
*/
JNIEXPORT void JNICALL Java_com_example_asm_NativeCode_DoCanny(JNIEnv* env,
jobject obj, jlong matSrc, jlong matDst, jdouble threshold1 = 50,
jdouble threshold2 = 150, jint aperatureSize = 3) {
Mat * img = (Mat *) matSrc;
Mat * dst = (Mat *) matDst;
cvtColor(*img, *dst, COLOR_BGR2GRAY);
Canny(*img, *dst, threshold1, threshold2, aperatureSize);
}
/*
* face detection
* matDst: face region
* scaleFactor = 1.1
* minNeighbors = 2
* minSize = 30 * 30
*/
JNIEXPORT void JNICALL Java_com_example_asm_NativeCode_FaceDetect(JNIEnv* env,
jobject obj, jlong matSrc, jlong matDst, jdouble scaleFactor, jint minNeighbors, jint minSize) {
Mat * src = (Mat *) matSrc;
Mat * dst = (Mat *) matDst;
float factor = 0.3;
Mat img;
resize(*src, img, Size((*src).cols * factor, (*src).rows * factor));
String cascadeFile = APP_DIR + "haarcascade_frontalface_alt2.xml";
if (!init) {
cascade.load(cascadeFile);
init = true;
}
if (cascade.empty() != true) {
vector<Rect> faces;
cascade.detectMultiScale(img, faces, scaleFactor, minNeighbors, 0
| CV_HAAR_FIND_BIGGEST_OBJECT
| CV_HAAR_DO_ROUGH_SEARCH
| CV_HAAR_SCALE_IMAGE, Size(minSize, minSize));
for (int i = 0; i < faces.size(); i++) {
Rect rect = faces[i];
rect.x /= factor;
rect.y /= factor;
rect.width /= factor;
rect.height /= factor;
if (i == 0) {
(*src)(rect).copyTo(*dst);
}
rectangle(*src, rect.tl(), rect.br(), Scalar(0, 255, 0, 255), 3);
}
}
}
/*
* do ASM
* error code:
* -1: illegal input Mat
* -2: ASM initialize error
* -3: no face detected
*/
JNIEXPORT jintArray JNICALL Java_com_example_asm_NativeCode_FindFaceLandmarks(
JNIEnv* env, jobject, jlong matAddr, jfloat ratioW, jfloat ratioH) {
const char * PATH = APP_DIR.c_str();
clock_t StartTime = clock();
jintArray arr = env->NewIntArray(2 * stasm_NLANDMARKS);
jint *out = env->GetIntArrayElements(arr, 0);
Mat img = *(Mat *) matAddr;
cvtColor(img, img, COLOR_BGR2GRAY);
if (!img.data) {
out[0] = -1; // error code: -1(illegal input Mat)
out[1] = -1;
img.release();
env->ReleaseIntArrayElements(arr, out, 0);
return arr;
}
int foundface;
float landmarks[2 * stasm_NLANDMARKS]; // x,y coords
if (!stasm_search_single(&foundface, landmarks, (const char*) img.data,
img.cols, img.rows, " ", PATH)) {
out[0] = -2; // error code: -2(ASM initialize failed)
out[1] = -2;
img.release();
env->ReleaseIntArrayElements(arr, out, 0);
return arr;
}
if (!foundface) {
out[0] = -3; // error code: -3(no face found)
out[1] = -3;
img.release();
env->ReleaseIntArrayElements(arr, out, 0);
return arr;
} else {
for (int i = 0; i < stasm_NLANDMARKS; i++) {
out[2 * i] = cvRound(landmarks[2 * i] * ratioW);
out[2 * i + 1] = cvRound(landmarks[2 * i + 1] * ratioH);
}
}
double TotalAsmTime = double(clock() - StartTime) / CLOCKS_PER_SEC;
__android_log_print(ANDROID_LOG_INFO, "com.example.asm.native",
"running in native code, \nStasm Ver:%s Img:%dx%d ---> Time:%.3f secs.", stasm_VERSION,
img.cols, img.rows, TotalAsmTime);
img.release();
env->ReleaseIntArrayElements(arr, out, 0);
return arr;
}
}
stasm代码比较多,这里不具体给出,这里特别给出一下Android.mk这个Android平台JNI代码的makefile
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
OPENCV_CAMERA_MODULES:=off
OPENCV_INSTALL_MODULES:=on
OPENCV_LIB_TYPE:=STATIC
ifeq ("$(wildcard $(OPENCV_MK_PATH))","")
#try to load OpenCV.mk from default install location
include /home/wesong/software/OpenCV-2.4.10-android-sdk/sdk/native/jni/OpenCV.mk
else
include $(OPENCV_MK_PATH)
endif
LOCAL_MODULE := Native
FILE_LIST := $(wildcard $(LOCAL_PATH)/stasm/*.cpp) $(wildcard $(LOCAL_PATH)/stasm/MOD_1/*.cpp)
LOCAL_SRC_FILES := Native.cpp $(FILE_LIST:$(LOCAL_PATH)/%=%)
LOCAL_LDLIBS += -llog -ldl
include $(BUILD_SHARED_LIBRARY)
# other library
include $(CLEAR_VARS)
LOCAL_MODULE := opencv_java-prebuild
LOCAL_SRC_FILES := libopencv_java.so
include $(PREBUILT_SHARED_LIBRARY)
需要特别注意: NDK在Ubuntu平台下build代码时会自动删除已经存在了的动态链接库文件,因为我们需要在Android项目中引用OpenCV4Android提供的libopencv_java.so这个链接库,然而每次build JNI代码的时候NDK都会把这个.so文件删了,所以,需要用一个小trick,就是上面的Android.mk文件中最后一部分,采用prebuild的libopencv_java.so
这个地方当时迷糊了我很久,并且浪费了很多时间进行处理,这个现象在Windows上是不存在的。WTF!
然后是Android中java代码对Native JNI code的调用
package com.example.asm;
public class NativeCode {
static {
System.loadLibrary("Native");
}
/*
* Canny edge detect
* threshold1 = 50
* threshold2 = 150
* aperatureSize = 3
*/
public static native void DoCanny(long matAddr_src, long matAddr_dst, double threshold1,
double threshold2, int aperatureSize);
/*
* do face detect
* scaleFactor = 1.1
* minNeighbors = 2
* minSize = 30 (30 * 30)
*/
public static native void FaceDetect(long matAddr_src, long matAddr_dst,
double scaleFactor, int minNeighbors, int minSize);
/*
* do ASM
* find landmarks
*/
public static native int[] FindFaceLandmarks(long matAddr, float ratioW, float ratioH);
}
然后就是主程序啦,主程序中有很多trick,目的是让Android能够高效的进行计算,因为ASM的计算量非常大,在Android平台上来说,需要消耗大量的时间,所以肯定不能放在UI线程中进行ASM计算。
本应用中通过AsyncTask来进行ASM特征点人脸定位
private class AsyncAsm extends AsyncTask<Mat, Integer, List<Integer>> {
private Context context;
private Mat src;
public AsyncAsm(Context context) {
this.context = context;
}
@Override
protected List<Integer> doInBackground(Mat... mat0) {
List<Integer> list = new ArrayList<Integer>();
Mat src = mat0[0];
this.src = src;
int[] points = NativeImageUtil.FindFaceLandmarks(src, 1, 1);
for (int i = 0; i < points.length; i++) {
list.add(points[i]);
}
return list;
}
// run on UI thread
@Override
protected void onPostExecute(List<Integer> list) {
MainActivity.this.drawAsmPoints(this.src, list);
}
};
并且在主界面中,实时的进行人脸检测,这里人脸检测是通过开启一个新的线程进行的:
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
Log.d(TAG, "onPreviewFrame");
Size size = camera.getParameters().getPreviewSize();
Bitmap bitmap = ImageUtils.yuv2bitmap(data, size.width, size.height);
Mat src = new Mat();
Utils.bitmapToMat(bitmap, src);
src.copyTo(currentFrame);
Log.d("com.example.asm.CameraPreview", "image size: w: " + src.width()
+ " h: " + src.height());
// do canny
Mat canny_mat = new Mat();
Imgproc.Canny(src, canny_mat, Params.CannyParams.THRESHOLD1,
Params.CannyParams.THRESHOLD2);
Bitmap canny_bitmap = ImageUtils.mat2Bitmap(canny_mat);
iv_canny.setImageBitmap(canny_bitmap);
// do face detect in Thread
faceDetectThread.assignTask(Params.DO_FACE_DETECT, src);
}
线程定义如下:
package com.example.asm;
import org.opencv.core.Mat;
import android.content.Context;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
public class FaceDetectThread extends Thread {
private final String TAG = "com.example.asm.FaceDetectThread";
private Context mContext;
private Handler mHandler;
private ImageUtils imageUtils;
public FaceDetectThread(Context context) {
mContext = context;
imageUtils = new ImageUtils(context);
}
public void assignTask(int id, Mat src) {
// do face detect
if (id == Params.DO_FACE_DETECT) {
Message msg = new Message();
msg.what = Params.DO_FACE_DETECT;
msg.obj = src;
this.mHandler.sendMessage(msg);
}
}
@Override
public void run() {
Looper.prepare();
mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
if (msg.what == Params.DO_FACE_DETECT) {
Mat detected = new Mat();
Mat face = new Mat();
Mat src = (Mat) msg.obj;
detected = imageUtils.detectFacesAndExtractFace(src, face);
Message uiMsg = new Message();
uiMsg.what = Params.FACE_DETECT_DONE;
uiMsg.obj = detected;
// send Message to UI
((MainActivity) mContext).mHandler.sendMessage(uiMsg);
}
}
};
Looper.loop();
}
}
貌似代码有点多,所以,还是请看源代码吧。
下面给出几个系统的应用截图,由于本人太屌丝,所以用的红米1S,性能不是很好,请见谅。。。
同时感谢Google提供赫本照片,再次申明文明转载,MD.
应用启动之后:
分为四个主窗口,第一个是摄像头预览,第二个是人脸检测,第三个是Canny边缘检测,最后一个是ASM计算,因为ASM计算比较耗时,所以提供了一个按钮对最新的人脸计算ASM.
计算ASM以后:
然后点击第四个区域可以进行ASM特征点的图片查看:
第二个人脸检测窗口点击以后会进行一个人脸检测的Activity:
点击第三个窗口可以进入Canny边缘检测的Activity:
版权声明:本文为博主原创文章,未经博主允许不得转载。
Android 人脸特征点检测(主动形状模型) ASM Demo (Active Shape Model on Android)
原文地址:http://blog.csdn.net/watkinsong/article/details/47026053