标签:
题目大意:有一个n*m的网格,网格上面有k个地方有石头,现在要求从左上角出发,遍历所有有石头的地方,然后回到左上角,问最短距离是多少
解题思路:因为石头的总数小于等于10,所以可以进行压缩
设dp[i][j][state]表示在(i,j)位置,遍历的石头状态为state,走的最小距离,直接bfs即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <queue>
using namespace std;
#define N 55
#define S (1<<11)
#define INF 0x3f3f3f3f
struct Node {
int x, y, state, step;
}start;
map<int, int> M;
int n, m, stone_num;
int dp[N][N][S], g[N][N];
int dir[4][2] = {{-1,0}, {1,0}, {0, -1}, {0,1}};
void init() {
M.clear();
stone_num = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
scanf("%d", &g[i][j]);
if (g[i][j])
M[i * m + j] = stone_num++;
}
memset(dp, 0, sizeof(dp));
}
int bfs() {
queue<Node> q;
start.x = 0;
start.y = 0;
if (g[0][0])
start.state = (1 << M[0]);
else
start.state = 0;
start.step = 0;
q.push(start);
while (!q.empty()) {
Node t = q.front();
q.pop();
int x = t.x, y = t.y;
if (x == 0 && y == 0 && t.state == (1 << stone_num) - 1) {
break;
}
for (int i = 0; i < 4; i++) {
int xx = x + dir[i][0];
int yy = y + dir[i][1];
int state = t.state;
int step = t.step;
if (xx < 0 || yy < 0 || xx >= n || yy >= m )
continue;
if (g[xx][yy])
state |= (1 << M[xx * m + yy]);
if (dp[xx][yy][state])
continue;
dp[xx][yy][state] = step + 1;
Node tt;
tt.x = xx;
tt.y = yy;
tt.state = state;
tt.step = t.step + 1;
q.push(tt);
}
}
return dp[0][0][(1 << stone_num) - 1];
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
init();
if(stone_num == 0)
printf("0\n");
else
printf("%d\n", bfs());
}
return 0;
}
上面是我复杂化了,其实只是状态压缩而已,只需要计算一下每种状态的转移就可以了,不需要一格格的走。。。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
using namespace std;
#define S (1 << 11)
#define N 20
#define INF 0x3f3f3f3f
struct Stone {
int x, y;
}stone[N];
struct Node {
int state, pos;
}start;
int n, m;
int dp[S][N], cnt;
void init() {
int x;
cnt = 1;
stone[0].x = 0;
stone[0].y = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
scanf("%d", &x);
if(x) {
stone[cnt].x = i;
stone[cnt++].y = j;
}
}
}
int dis(int i, int j) {
return abs(stone[i].x - stone[j].x) + abs(stone[i].y - stone[j].y);
}
void solve() {
memset(dp, 0x3f, sizeof(dp));
queue<Node> q;
start.state = 1;
start.pos = 0;
q.push(start);
dp[1][0] = 0;
while (!q.empty()) {
Node t = q.front();
q.pop();
int state = t.state;
int pos = t.pos;
for (int i = 1; i < cnt; i++) {
if (!(state & (1 << i))) {
if ((state | (1 << i)) == (1 << cnt) - 1) {
dp[state | (1 << i)][i] = min(dp[state | (1 << i)][i], dp[state][pos] + dis(pos,i) + dis(0,i));
}
else {
if(dp[state | (1 << i)][i] > dp[state][pos] + dis(pos, i)) {
dp[state | (1 << i)][i] = dp[state][pos] + dis(pos, i);
Node tt;
tt.state = state | (1 << i);
tt.pos = i;
q.push(tt);
}
}
}
}
}
int ans = INF;
for(int i = 1; i < cnt; i++)
ans = min(ans, dp[(1 << cnt) - 1][i]);
printf("%d\n", ans);
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
init();
if(cnt == 1)
printf("0\n");
else
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU - 5067 Harry And Dig Machine (bfs + 状态压缩)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/47042633