码迷,mamicode.com
首页 > 数据库 > 详细

【甘道夫】Hive 0.13.1 on Hadoop2.2.0 + Oracle10g部署详细解释

时间:2015-07-27 09:22:46      阅读:274      评论:0      收藏:0      [点我收藏+]

标签:

环境:
hadoop2.2.0
hive0.13.1
Ubuntu 14.04 LTS
java version "1.7.0_60"
Oracle10g

***欢迎转载。请注明来源***   
http://blog.csdn.net/u010967382/article/details/38709751

到下面地址下载安装包
http://mirrors.cnnic.cn/apache/hive/stable/apache-hive-0.13.1-bin.tar.gz

安装包解压到server上
/home/fulong/Hive/apache-hive-0.13.1-bin

改动环境变量,加入下面内容
export HIVE_HOME=/home/fulong/Hive/apache-hive-0.13.1-bin
export PATH=$HIVE_HOME/bin:$PATH

进到conf文件夹下拷贝模板配置文件重命名
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin/conf$ ls
hive-default.xml.template  hive-exec-log4j.properties.template
hive-env.sh.template       hive-log4j.properties.template
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin/conf$ cp hive-env.sh.template hive-env.sh
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin/conf$ cp hive-default.xml.template hive-site.xml
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin/conf$ ls
hive-default.xml.template  hive-env.sh.template                 hive-log4j.properties.template
hive-env.sh                hive-exec-log4j.properties.template  hive-site.xml

改动配置文件hive-env.sh中的下面几处。分别制定Hadoop的根文件夹,Hive的conf和lib文件夹
# Set HADOOP_HOME to point to a specific hadoop install directory
HADOOP_HOME=/home/fulong/Hadoop/hadoop-2.2.0

# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=/home/fulong/Hive/apache-hive-0.13.1-bin/conf

# Folder containing extra ibraries required for hive compilation/execution can be controlled by:
export HIVE_AUX_JARS_PATH=/home/fulong/Hive/apache-hive-0.13.1-bin/lib

改动配置文件hive-site.sh中的下面几处连接Oracle相关參数
<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:oracle:thin:@192.168.0.138:1521:orcl</value>
  <description>JDBC connect string for a JDBC metastore</description>
</property>

<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>oracle.jdbc.driver.OracleDriver</value>
  <description>Driver class name for a JDBC metastore</description>
</property>

<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>hive</value>
  <description>username to use against metastore database</description>
</property>

<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>hivefbi</value>
  <description>password to use against metastore database</description>
</property>


配置log4j
在$HIVE_HOME下创建log4j文件夹,用于存储日志文件
拷贝模板重命名
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin/conf$ cp hive-log4j.properties.template hive-log4j.properties

改动存放日志的文件夹
hive.log.dir=/home/fulong/Hive/apache-hive-0.13.1-bin/log4j

拷贝Oracle JDBC的jar包
将相应Oracle的jdbc包复制到$HIVE_HOME/lib下

启动Hive
fulong@FBI006:~/Hive/apache-hive-0.13.1-bin$ hive
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/08/20 17:14:05 INFO Configuration.deprecation: mapred.committer.job.setup.cleanup.needed is deprecated. Instead, use mapreduce.job.committer.setup.cleanup.needed
14/08/20 17:14:05 WARN conf.HiveConf: DEPRECATED: hive.metastore.ds.retry.* no longer has any effect.  Use hive.hmshandler.retry.* instead

Logging initialized using configuration in file:/home/fulong/Hive/apache-hive-0.13.1-bin/conf/hive-log4j.properties
Java HotSpot(TM) 64-Bit Server VM warning: You have loaded library /home/fulong/Hadoop/hadoop-2.2.0/lib/native/libhadoop.so which might have disabled stack guard. The VM will try to fix the stack guard now.
It‘s highly recommended that you fix the library with ‘execstack -c <libfile>‘, or link it with ‘-z noexecstack‘.
hive>

验证
打算创建一张表存储搜狗实验室下载的用户搜索行为日志。

数据下载地址:
http://www.sogou.com/labs/dl/q.html

首先创建表:
hive> create table searchlog (time string,id string,sword string,rank int,clickrank int,url string) row format delimited fields terminated by ‘\t‘ lines terminated by ‘\n‘ stored as textfile;

此时会报错:
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataStoreException: An exception was thrown while adding/validating class(es) : ORA-01754: a table may contain only one column of type LONG

解决的方法:
用解压缩工具打开${HIVE_HOME}/lib中的hive-metastore-0.13.0.jar,发现名为package.jdo的文件。打开该文件并找到以下的内容。
<field name="viewOriginalText" default-fetch-group="false">
        <column name="VIEW_ORIGINAL_TEXT" jdbc-type="LONGVARCHAR"/>
</field>
<field name="viewExpandedText" default-fetch-group="false">
        <column name="VIEW_EXPANDED_TEXT" jdbc-type="LONGVARCHAR"/>
</field>
能够发现列VIEW_ORIGINAL_TEXT和VIEW_EXPANDED_TEXT的类型都为LONGVARCHAR,相应于Oracle中的LONG,这样就与Oracle表仅仅能存在一列类型为LONG的列的要求相矛盾,所以就出现错误了。


依照Hive官网的建议将该两列的jdbc-type的值改为CLOB。改动后的内容例如以下所看到的。
<field name="viewOriginalText"default-fetch-group="false">
             <column name="VIEW_ORIGINAL_TEXT" jdbc-type="CLOB"/>
</field>
<field name="viewExpandedText"default-fetch-group="false">
             <column name="VIEW_EXPANDED_TEXT" jdbc-type="CLOB"/>
</field>

改动以后,重新启动hive。


又一次运行创建表的命令。创建表成功:
hive> create table searchlog (time string,id string,sword string,rank int,clickrank int,url string) row format delimited fields terminated by ‘\t‘ lines terminated by ‘\n‘ stored as textfile;
OK
Time taken: 0.986 seconds

将本地数据载入进表中:
hive> load data local inpath ‘/home/fulong/Downloads/SogouQ.reduced‘ overwrite into table searchlog;
Copying data from file:/home/fulong/Downloads/SogouQ.reduced
Copying file: file:/home/fulong/Downloads/SogouQ.reduced
Loading data to table default.searchlog
rmr: DEPRECATED: Please use ‘rm -r‘ instead.
Deleted hdfs://fulonghadoop/user/hive/warehouse/searchlog
Table default.searchlog stats: [numFiles=1, numRows=0, totalSize=152006060, rawDataSize=0]
OK
Time taken: 25.705 seconds

查看全部表:
hive> show tables;
OK
searchlog
Time taken: 0.139 seconds, Fetched: 1 row(s)

统计行数:
hive> select count(*) from searchlog;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1407233914535_0001, Tracking URL = http://FBI003:8088/proxy/application_1407233914535_0001/
Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2014-08-20 18:03:17,667 Stage-1 map = 0%,  reduce = 0%
2014-08-20 18:04:05,426 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.46 sec
2014-08-20 18:04:27,317 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.74 sec
MapReduce Total cumulative CPU time: 4 seconds 740 msec
Ended Job = job_1407233914535_0001
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Cumulative CPU: 4.74 sec   HDFS Read: 152010455 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 740 msec
OK
1724264
Time taken: 103.154 seconds, Fetched: 1 row(s)






版权声明:本文博客原创文章。博客,未经同意,不得转载。

【甘道夫】Hive 0.13.1 on Hadoop2.2.0 + Oracle10g部署详细解释

标签:

原文地址:http://www.cnblogs.com/lcchuguo/p/4679189.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!