标签:
Time Limit: 12000MS | Memory Limit: 65536K | |
Total Submissions: 46507 | Accepted: 13442 | |
Case Time Limit: 5000MS |
Description
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
Output
Sample Input
8 3 1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3 3 3 5 5 6 7
Source
POJ Monthly--2006.04.28, Ikki
固定区间长度一维的数组就好,二维超内存
ac代码
#include<stdio.h> #include<string.h> #include<math.h> #define max(a,b) (a>b?a:b) #define min(a,b) (a>b?b:a) int maxv[1000010],minv[1000010],a[1000010],n,m,k; void init() { int i,j; for(i=1;i<=n;i++) { minv[i]=a[i]; maxv[i]=a[i]; } for(i=1;i<=k;i++) { for(j=1;j+(1<<i)-1<=n;j++) { minv[j]=min(minv[j],minv[j+(1<<(i-1))]); maxv[j]=max(maxv[j],maxv[j+(1<<(i-1))]); } } } int q_max(int l,int r) { // int k=(int)(log((double)(r-l+1))/log(2.0)); return max(maxv[l],maxv[r-(1<<k)+1]); } int q_min(int l,int r) { // int k=(int)(log((double)(r-l+1))/log(2.0)); return min(minv[l],minv[r-(1<<k)+1]); } int main() { // int n,m; while(scanf("%d%d",&n,&m)!=EOF) { int i; for(i=1;i<=n;i++) { scanf("%d",&a[i]); } k=(int)(log(double(m))/log(2.0)); init(); if(m<=n) { printf("%d",q_min(1,m+1-1)); } for(i=2;i+m-1<=n;i++) { printf(" %d",q_min(i,m+i-1)); } printf("\n"); if(m<=n) { printf("%d",q_max(1,m+1-1)); } for(i=2;i+m-1<=n;i++) { printf(" %d",q_max(i,m+i-1)); } printf("\n"); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 题目2823 Sliding Window(RMQ,固定区间长度)
标签:
原文地址:http://blog.csdn.net/yu_ch_sh/article/details/47083283