标签:
上鲍恩描述了数据结构的线性结构,我们引入非线性结构本博客—树和二叉树。我想向大家介绍一些基本概念树,树遍历,然后介绍了二叉树的概念和特征。和二叉树遍历。叉树的对照,总结。
树为了描写叙述现实世界的层次结构,树结构中一个数据元素能够有两个或两个以上的直接后继元素。
树的概念是学习树的关键所在。掌握了树的基本概念,学会树与二叉树,so easy。
我通过一棵树来了解树的基本概念。例如以下图
1、结点的度
结点的度是子结点的个数。比如:结点1有三个字结点2,3,4,所以结点1的度为3。
2、树的度
树的度等于全部结点度中度最高的值。比如:上图中结点度最高为3,所以树的度为3。
3、叶子结点
叶子结点是度为0的结点即没有子结点的结点。比如:上图中3,5,6,7,9。10。
4、分支结点
分支结点是除了叶子结点。树中的其它全部结点。
比如:上面树的分支结点为1,2,4,8。
5、内部结点
内部结点是除了根结点以及叶子结点或在分支结点的基础之上在去掉根结点。比如:上面树的内部结点为2,4,8。
6、父结点、子结点、兄弟结点
父节点、子结点和兄弟结点是相对而言的。比如:结点1是结点2。3。4的父节点,结点2。3,4也是结点1的子结点。结点2,3,4又是兄弟结点。
7、层次
图中我们已经表出来了。根为第一层。根的孩子为第二层,依此类推,若某结点在第i层。则其孩子结点在第i+1层。
树的遍历特别简单,我们还是以上面的树为例:
1、前序遍历
基本思想:前序遍历就是先訪问根结点。再訪问叶子结点。
图中树的前序遍历为:1,2。5,6。7,3,4,8。9,10。
2、后序遍历
基本思想:本后序遍历就是先訪问子结点,再訪问根结点。
图中树的后序遍历为:5,6。7,2,3,9,10,8,4。1。
3、层次遍历
基本思想:从第一层開始,依此遍历每层,直到结束。
图中树的层次遍历为:1,2。3,4,5。6,7,8。9,10。
学习二叉树的特性差点儿能够帮助我们解决全部的二叉树问题,在学习二叉树特性一定要通过上面给出的二叉树进行实践,实践出真理,同一时候,印象也会更深刻。
一般二叉树性质:
全然二叉树性质:
满二叉树性质:
在满二叉树中,叶节点的个数比分支节点的个数多1
1、前序遍历(与树的前序遍历一样)
基本思想:先訪问根结点,再先序遍历左子树。最后再先序遍历右子树即根—左—右。
图中前序遍历结果是:1,2,4。5,7。8,3,6。
2、中序遍历
基本思想:先中序遍历左子树,然后再訪问根结点。最后再中序遍历右子树即左—根—右。
图中中序遍历结果是:4,2,7,8。5。1,3,6。
3、后序遍历
基本思想:先后序遍历左子树,然后再后序遍历右子树,最后再訪问根结点即左—右—根。
图中后序遍历结果是:4,8。7,5,2。6,3,1。
4、层次遍历(与树的层次遍历一样)
基本思想:从第一层開始,依此遍历每层,直到结束。
图中层次遍历结果是:1,2。3,4。5,6。7。8。
1、树能够有多个子结点。二叉树最多仅仅能两个结点。
2、树中的子结点是无序的,二叉树是分左子结点和右子结点。
3、二叉树不是特殊树。而是独立的数据结构。
这篇博文都是树的基本内容,这些基本内容能够帮助你更加深刻的理解树的其它内容。仅仅要你能努力,世界充满爱。
兴许博客的更新列表,敬请期待。
我的软考之路(一)——开篇(已更新)
我的软考之路(二)——J2SE宏观总结(已更新)
我的软考之路(三)——数据结构与算法(1)之线性表(已更新)
我的软考之路(四)——数据结构与算法(2)之树与二叉树(已更新)
我的软考之路(六)——数据结构与算法(4)之八大排序(已更新)
版权声明:本文博客原创文章,博客,未经同意,不得转载。
标签:
原文地址:http://www.cnblogs.com/mengfanrong/p/4683193.html