from __future__ import division
def GetAverage(mat):
n=len(mat)
m= width(mat)
num = [0]*m
for j in range(0,m):
for i in mat:
num[j]=num[j]+i[j]
num[j]=num[j]/n
return num
def width(lst):
i=0
for j in lst[0]:
i=i+1
return i
def GetVar(average,mat):
ListMat=[]
for i in mat:
ListMat.append(list(map(lambda x: x[0]-x[1], zip(average, i))))
n=len(ListMat)
m= width(ListMat)
num = [0]*m
for j in range(0,m):
for i in ListMat:
num[j]=num[j]+(i[j]*i[j])
num[j]=num[j]/n
return num
def DenoisMat(mat):
average=GetAverage(mat)
variance=GetVar(average,mat)
section=list(map(lambda x: x[0]+x[1], zip(average, variance)))
n=len(mat)
m= width(mat)
num = [0]*m
denoisMat=[]
for i in mat:
for j in range(0,m):
if i[j]>section[j]:
i[j]=section[j]
denoisMat.append(i)
return denoisMat
def AutoNorm(mat):
n=len(mat)
m= width(mat)
MinNum=[9999999999]*m
MaxNum = [0]*m
for i in mat:
for j in range(0,m):
if i[j]>MaxNum[j]:
MaxNum[j]=i[j]
for p in mat:
for q in range(0,m):
if p[q]<=MinNum[q]:
MinNum[q]=p[q]
section=list(map(lambda x: x[0]-x[1], zip(MaxNum, MinNum)))
print section
NormMat=[]
for k in mat:
distance=list(map(lambda x: x[0]-x[1], zip(k, MinNum)))
value=list(map(lambda x: x[0]/x[1], zip(distance,section)))
NormMat.append(value)
return NormMat GetAverage(mat):返回均值
GetVar(average,mat):返回方差
DenoisMat(mat):去噪
AutoNorm(mat):归一化矩阵
/********************************
* 本文来自博客 “李博Garvin“
* 转载请标明出处:http://blog.csdn.net/buptgshengod
******************************************/
【机器学习算法-python实现】矩阵去噪以及归一化,布布扣,bubuko.com
原文地址:http://blog.csdn.net/buptgshengod/article/details/37557929